Deployment of the septal anchoring system.

Slides:



Advertisements
Similar presentations
Demonstrations I, II, and III.
Advertisements

Substantial lengthening from the tip with directional control enables a body to pass through a constrained environment and create a structure along its.
Soft robotic device applied to the RV in a pressure overload model of RHF. Soft robotic device applied to the RV in a pressure overload model of RHF. (A.
A battery-free microorigami robotic arm.
Self-folding triangular devices at two scales.
Degradation of MSP samples in 37°C DPBS solution.
Comparison of predicted and measured forces and moments.
Demonstrations integrated system tests.
Basic design concept of human mimetic humanoid.
TPAD controller schematic and testing for WPC.
TPAD controller performance for three force components.
Soft robotic VAD concept.
Cable-driven system diagram for structure matrix.
Three different types of transfer functions with a codomain of [0,1].
Robot surface tension experiments.
TPAD training protocol.
Implant surgery. Implant surgery. (A) Suturing of rings to the esophagus. (B) A silicone sheet is inserted behind the esophagus, and the implant is connected.
Self-sensing of actuator position.
Examples of AEGIS autonomous target selection.
Workspace comparison of Delta robots.
Ex vivo testing of the soft robotic devices.
Soft robotic device applied to the left side in a coronary ligation HF model. Soft robotic device applied to the left side in a coronary ligation HF model.
Group data during free walking between sessions 1 and 16.
Visual explanation of the interaction terms.
Soft robotic VAD implementations, control schemes, and HF models.
Visual explanation of the interaction terms.
AEGIS intelligent targeting compared with blind targeting.
Prosthesis grasping and control.
Comparison of repertoire distributions to baseline.
A novice user executing various subtasks from study 1.
Tukey boxplots overlaid on data points from objective and subjective measures, displaying results from study 1. Tukey boxplots overlaid on data points.
Soft robotic VAD implementations, control schemes, and HF models.
Tactile features for prosthesis perception.
Online verification using reachable occupancies.
Illustration of the addressable wireless folding concept.
Cell viability tests. Cell viability tests. SEM images of (A) MC3T3-E1 cells and (B) MSCs on days 1, 3, and 5 of culture. (C) Survival rates of MC3T3-E1.
Examples of organism-based systems.
Experimental results for tremor reduction.
Soft robotic device applied to the left side in a coronary ligation HF model. Soft robotic device applied to the left side in a coronary ligation HF model.
Fig. 2 Preserved long-term functionality of the TEHVs over 1-year follow-up as assessed by ICE and cardiac MRI flow measurements. Preserved long-term functionality.
Translation of a spherical object.
Microrobots with different cell-carrying capacities under different grid lengths (lg) and burr lengths (lb). Microrobots with different cell-carrying capacities.
Self-sensing of actuator position.
Brain-computer interfaces.
Details of an implementation of a mechanism within the control chambers for selective lengthening of the sides of the soft robot. Details of an implementation.
Untethered kirigami-skinned soft crawlers.
Degradation of MSP samples in 37°C DPBS solution.
Schematic representation of MT sorting under a given electric field.
Soft robotic device applied to the RV in a pressure overload model of RHF. Soft robotic device applied to the RV in a pressure overload model of RHF. (A.
Steady-state performance of the soft robotic device in LHF models.
Deployment of the septal anchoring system.
The two modalities for the multitask condition.
Collision resilience and foldability of the origami drone.
Simulation results of magnetic driving ability in hepatic artery, portal vein, and hepatic vein. Simulation results of magnetic driving ability in hepatic.
Comparison of predicted and measured forces and moments.
Results of a representative participant with multiple training sessions. Results of a representative participant with multiple training sessions. Average.
Galloping-like gait with the design of a two-legged robot.
AEGIS autonomous targeting process.
Examples of AEGIS autonomous target selection.
Examples of organic sensing in robotics.
Growth enables a soft robot to move its tip through constrained environments and to form 3D structures defined by the path of its tip. Growth enables a.
Details of seal design. Details of seal design. (A) RAD sampler (left), with close-up view (right) indicating the soft edges that form the light seal.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Proprioception. Proprioception. (A) Computer-aided design (CAD) model of each component of the cylinder and the completed device with three different stiffness.
State-of-the-art midwater sampling tools.
Fig. 5. High burdens of AA signature mutations and predicted immunogenicity in Taiwan HCCs. High burdens of AA signature mutations and predicted immunogenicity.
Iron line orientation inside the PDMS matrix.
Floating microrobots with different preferred magnetization directions: Fabrication and control principles. Floating microrobots with different preferred.
Breakdown of incorrect participant responses.
Setup used in the study. Setup used in the study. A child interacts with the robot tutor with a large touchscreen sitting between them, displaying the.
Presentation transcript:

Deployment of the septal anchoring system. Deployment of the septal anchoring system. (A) Insertion of needle and guidewire under ultrasound guidance. (B) Insertion of a 20-French introducer sheath and deployment of a collapsible septal anchor. (C) Removal of the introducer sheath and retraction of the deployed septal anchor. (D) Introduction of a delivery tube and coupling of a tip-mounted septal disc to a collapsible anchor. (E) Coupling of a bracing bar and removal of the delivery tube. (F) Insertion of the ventricle wall sealing ring. Implanted components are shown in green. Christopher J. Payne et al. Sci. Robotics 2017;2:eaan6736 Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works