UTE bi-component analysis of T2* relaxation in articular cartilage

Slides:



Advertisements
Similar presentations
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
Advertisements

Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young.
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
A. Williams, Y. Qian, S. Golla, C.R. Chu  Osteoarthritis and Cartilage 
Machine learning classification of OARSI-scored human articular cartilage using magnetic resonance imaging  B.G. Ashinsky, C.E. Coletta, M. Bouhrara,
Yevgeniya Kobrina, Lassi Rieppo, Simo Saarakkala, Jukka S
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits  E. Calvo, M.D., S. Castañeda, M.D., R.
Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements 
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation.
Osteoarthritis year 2013 in review: imaging
Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich.
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
T. Virén, M. Timonen, H. Tyrväinen, V. Tiitu, J.S. Jurvelin, J. Töyräs 
The groove model of osteoarthritis applied to the ovine fetlock joint
Osteoclasts are recruited to the subchondral bone in naturally occurring post-traumatic equine carpal osteoarthritis and may contribute to cartilage degradation 
Trabecular bone structure and spatial differences in articular cartilage MR relaxation times in individuals with posterior horn medial meniscal tears 
Evaluation of cartilage matrix disorders by T2 relaxation time in patients with hip dysplasia  T. Nishii, M.D., H. Tanaka, M.D., N. Sugano, M.D., T. Sakai,
MRI of articular cartilage in OA: novel pulse sequences and compositional/functional markers  Garry E. Gold, Deborah Burstein, Bernard Dardzinski, Phillip.
7th International Workshop on Osteoarthritis Imaging report: “imaging in OA – now is the time to move ahead”  A. Guermazi, F. Eckstein, D. Hunter, F.
Intraoperative validation of quantitative T2 mapping in patients with articular cartilage lesions of the knee  S.T. Soellner, A. Goldmann, D. Muelheims,
Cartilage MRI T2∗ relaxation time and perfusion changes of the knee in a 5/6 nephrectomy rat model of chronic kidney disease  C.-Y. Wang, Y.-J. Peng,
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
Knee joint subchondral bone structure alterations in active athletes: a cross-sectional case–control study  F.W. Roemer, M. Jarraya, J. Niu, J. Duryea,
A longitudinal study of the quantitative evaluation of patella cartilage after total knee replacement by delayed gadolinium-enhanced magnetic resonance.
M.L. Hall, D.A. Krawczak, N.K. Simha, J.L. Lewis 
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
H. Shao, C. Pauli, S. Li, Y. Ma, A. S. Tadros, A. Kavanaugh, E. Y
Heterogeneity in patellofemoral cartilage adaptation to anterior cruciate ligament transection; chondrocyte shape and deformation with compression  A.L.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
Volumetric and semiquantitative assessment of MRI-detected subchondral bone marrow lesions in knee osteoarthritis: a comparison of contrast-enhanced and.
B. Bittersohl, F. R. Miese, H. S. Hosalkar, M. Herten, G. Antoch, R
A. Williams, Y. Qian, C.R. Chu  Osteoarthritis and Cartilage 
Effects of ACL interference screws on articular cartilage volume and thickness measurements with 1.5 T and 3 T MRI  M.E. Bowers, B.S., G.A. Tung, M.D.,
A polarized light microscopy method for accurate and reliable grading of collagen organization in cartilage repair  A. Changoor, N. Tran-Khanh, S. Méthot,
A. Ludin, J.J. Sela, A. Schroeder, Y. Samuni, D.W. Nitzan, G. Amir 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Nondestructive assessment of sGAG content and distribution in normal and degraded rat articular cartilage via EPIC-μCT  L. Xie, A.S.P. Lin, R.E. Guldberg,
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Radiofrequency (RF) coil impacts the value and reproducibility of cartilage spin–spin (T2) relaxation time measurements  B.J. Dardzinski, E. Schneider 
Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging  S.K. de Visser, B.Eng. (Med.), R.W. Crawford, D.Phil.,
T. Nozaki, Y. Kaneko, H. Yu, K. Kaneshiro, R. Schwarzkopf, T. Hara, H
Quantitative MR T2 measurement of articular cartilage to assess the treatment effect of intra-articular hyaluronic acid injection on experimental osteoarthritis.
Patterns of joint damage seen on MRI in early hip osteoarthritis due to structural hip deformities  D. Stelzeneder, T.C. Mamisch, I. Kress, S.E. Domayer,
Improving subchondral bone integrity reduces progression of cartilage damage in experimental osteoarthritis preceded by osteoporosis  M. Bellido, L. Lugo,
Dual inversion recovery ultrashort echo time (DIR-UTE) imaging and quantification of the zone of calcified cartilage (ZCC)  J. Du, M. Carl, W.C. Bae,
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
N. Männicke, M. Schöne, M. Oelze, K. Raum  Osteoarthritis and Cartilage 
Degeneration of patellar cartilage in patients with recurrent patellar dislocation following conservative treatment: evaluation with delayed gadolinium-enhanced.
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
S. Zheng, Y. Xia  Osteoarthritis and Cartilage 
Comments on Beattie et al
F.W. Roemer, M.D.  Osteoarthritis and Cartilage 
Functional ankle instability as a risk factor for osteoarthritis: using T2-mapping to analyze early cartilage degeneration in the ankle joint of young.
Histopathological correlation of cartilage swelling detected by magnetic resonance imaging in early experimental osteoarthritis  E. Calvo, M.D., I. Palacios,
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
Regional variation in T1ρ and T2 times in osteoarthritic human menisci: correlation with mechanical properties and matrix composition  M. Son, S.B. Goodman,
Longitudinal evaluation of T1ρ and T2 spatial distribution in osteoarthritic and healthy medial knee cartilage  J. Schooler, D. Kumar, L. Nardo, C. McCulloch,
Correlation between the MR T2 value at 4
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B
High resolution T1ρ mapping of human knee cartilage at 7T
Presentation transcript:

UTE bi-component analysis of T2* relaxation in articular cartilage H. Shao, E.Y. Chang, C. Pauli, S. Zanganeh, W. Bae, C.B. Chung, G. Tang, J. Du  Osteoarthritis and Cartilage  Volume 24, Issue 2, Pages 364-373 (February 2016) DOI: 10.1016/j.joca.2015.08.017 Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 High resolution imaging of a cadaveric human patella from the knee joint of a 58-year old male donor with 2D PD-FSE (A),T1-FSE (B), SPGR (C), UTE (D), UTE with echo subtraction (E) and histology (F) as well as PLM (G). Clinical FSE and SPGR sequences show near zero signal for the deep radial and calcified cartilage, which is depicted as a high signal line above the subchondral bone (D and E). Histology and PLM confirmed this patella to be normal with a Mankin score of 0–1 and Vaudey score of 0. B0 field (arrow) is shown for the experimental setup. Osteoarthritis and Cartilage 2016 24, 364-373DOI: (10.1016/j.joca.2015.08.017) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Single-component fitting of CPMG images of a normal patella specimen (A) with signal from ROIs drawn in the superficial (B), middle (C) and deep layers (D), and a global ROI (E), and bi-component fitting of UTE images of the same patella specimen (F) with signal from the same ROIs (G–J) as well as linear ROIs in the deep radial and calcified cartilage (K) and subchondral bone (L). T2 curves (B–E) show a single-component decay behavior with a T2 of 72.95 ms for the superficial layer (B), 47.42 ms for the middle layer (C) and 29.31 ms for the deep layer (D), and 44.65 ms for the global ROI (E). In (G–L) there is an obvious short T2∗ component with a T2∗ of 0.70 for the superficial layer (G), 0.61 ms for the middle layer (H), 0.76 ms for the deep layer (I), and 0.73 ms for the global ROI including all three layers (J). Furthermore, a short T2* of 0.66 ms was observed for the deep radial and calcified layer (K) and 0.73 ms for the subchondral bone (L). Long T2* components with T2*s of 55.68 (G), 42.33 (H), 35.53 (I), 30.83 (J), 23.91 (K), 17.83 (L) ms were also observed for the respective ROIs. Bound water fractions account for 23.4% for the global ROI (J),16.2% of the superficial layer (G), 18.7% for the middle layer (H), 15.1% for the deep layer (I), 32.4% for the deep radial and calcified cartilage (K) and 55.3% for the subchondral bone (L). 95% fitting confidence level was displayed for each fitting with n = 8 for CPMG T2 analysis and n = 12 for UTE T2* bi-component analysis. Fitting errors in single component T2 analysis and bi-component T2* analysis were also displayed. Osteoarthritis and Cartilage 2016 24, 364-373DOI: (10.1016/j.joca.2015.08.017) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Safranin-O (A), PLM (B), UTE (C) and PD-SE (D) images of another normal patella sample from a 58-year old male donor. Line profiles for the short T2* (E), long T2* (F), short fraction (H), and long fraction (I) as well as CPMG T2 (G) are displayed. There is a gradual increase in long T2*, long fraction and T2 from the deep cartilage to the superficial cartilage. Fitting errors in single component T2 analysis and bi-component T2* analysis were displayed. Areas of peak signal corresponding to magic angle on the UTE and SE images were also depicted (arrows). Osteoarthritis and Cartilage 2016 24, 364-373DOI: (10.1016/j.joca.2015.08.017) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Magic angle study of a patella sample which was divided into different layers across the cartilage depth and different regions from left to right (A). UTE T2* bi-component analysis was performed to show the orientation dependence of short T2*, long T2*, short T2* fraction and long T2* fraction for the superficial layer (B–E), middle layer (F–I), radial layer (J–M), deep radial and calcified layer (N–Q) and subchondral bone (R–U), respectively. Significant magic angle effect was observed for long T2* values. The short and long T2* fractions are relatively insensitive to the magic angle effect. Fitting errors in bi-component T2* analysis were displayed. Osteoarthritis and Cartilage 2016 24, 364-373DOI: (10.1016/j.joca.2015.08.017) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Magic angle study of CPMG T2 for radial layer (A), middle layer (B) and superficial layer (C) are displayed for ROIs drawn from the lateral to medial facets. Significant magic angle effect was observed for T2 values in all articular cartilage layers. Fitting errors in single component T2 analysis were displayed. Osteoarthritis and Cartilage 2016 24, 364-373DOI: (10.1016/j.joca.2015.08.017) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 UTE imaging of a 59 year old volunteer who is a regular runner and in good health. Selected interleaved 4-echo UTE acquisitions with a TE of 8 μs (A), 0.4 ms (B), 0.8 ms (C), 2.2 ms (D), 4.4 ms (E), 6.6 ms (F), 11 ms (G), 16 ms (H), 20 ms (I), 30 ms (J), echo subtraction (K), and bi-component T2* analysis for the global ROI (L), superficial layer (M), middle layer (N), deep layer (O) and deep radial and calcified cartilage (P). The echo subtraction image was generated by subtracting the image with a TE of 2.2 ms from the first image with a TE of 8 μs. ROIs for the different layers of femoral cartilage were shown in (K). 95% fitting confidence level was displayed UTE T2* bi-component analysis with n = 16. Osteoarthritis and Cartilage 2016 24, 364-373DOI: (10.1016/j.joca.2015.08.017) Copyright © 2015 Osteoarthritis Research Society International Terms and Conditions