Evaluation of Relational Operations: Other Techniques

Slides:



Advertisements
Similar presentations
Database Management Systems, R. Ramakrishnan and J. Gehrke1 Evaluation of Relational Operations Chapter 12, Part A.
Advertisements

Implementation of relational operations
Evaluation of Relational Operators CS634 Lecture 11, Mar Slides based on “Database Management Systems” 3 rd ed, Ramakrishnan and Gehrke.
Database Management Systems 3ed, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 14, Part B.
Implementation of Other Relational Algebra Operators, R. Ramakrishnan and J. Gehrke1 Implementation of other Relational Algebra Operators Chapter 12.
Database Management Systems, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
Database Management Systems, R. Ramakrishnan and Johannes Gehrke1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
1 Overview of Query Evaluation Chapter Objectives  Preliminaries:  Core query processing techniques  Catalog  Access paths to data  Index matching.
SPRING 2004CENG 3521 Query Evaluation Chapters 12, 14.
Implementation of Relational Operations CS186, Fall 2005 R&G - Chapter 14 First comes thought; then organization of that thought, into ideas and plans;
Evaluation of Relational Operators 198:541. Relational Operations  We will consider how to implement: Selection ( ) Selects a subset of rows from relation.
Implementation of Relational Operations CS 186, Spring 2006, Lecture 14&15 R&G Chapters 12/14 First comes thought; then organization of that thought, into.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Overview of Query Evaluation Chapter 12.
Query Optimization 3 Cost Estimation R&G, Chapters 12, 13, 14 Lecture 15.
1 Evaluation of Relational Operations: Other Techniques Chapter 12, Part B.
1 Evaluation of Relational Operations Yanlei Diao UMass Amherst March 01, 2007 Slides Courtesy of R. Ramakrishnan and J. Gehrke.
Evaluation of Relational Operations. Relational Operations v We will consider how to implement: – Selection ( ) Selects a subset of rows from relation.
1 Implementation of Relational Operations: Joins.
CPSC 404, Laks V.S. Lakshmanan1 Evaluation of Relational Operations: Other Operations Chapter 14 Ramakrishnan & Gehrke (Sections ; )
Relational Operator Evaluation. Overview Index Nested Loops Join If there is an index on the join column of one relation (say S), can make it the inner.
Lec3/Database Systems/COMP4910/031 Evaluation of Relational Operations Chapter 14.
Relational Operator Evaluation. Overview Application Programmer (e.g., business analyst, Data architect) Sophisticated Application Programmer (e.g.,
1 Database Systems ( 資料庫系統 ) December 19, 2004 Lecture #12 By Hao-hua Chu ( 朱浩華 )
Query Execution. Where are we? File organizations: sorted, hashed, heaps. Indexes: hash index, B+-tree Indexes can be clustered or not. Data can be stored.
Implementation of Relational Operations R&G - Chapter 14 First comes thought; then organization of that thought, into ideas and plans; then transformation.
Database Management Systems 1 Raghu Ramakrishnan Evaluation of Relational Operations Chpt 14.
Relational Operator Evaluation. overview Projection Two steps –Remove unwanted attributes –Eliminate any duplicate tuples The expensive part is removing.
Implementation of Database Systems, Jarek Gryz1 Evaluation of Relational Operations Chapter 12, Part A.
Query Execution Query compiler Execution engine Index/record mgr. Buffer manager Storage manager storage User/ Application Query update Query execution.
Alon Levy 1 Relational Operations v We will consider how to implement: – Selection ( ) Selects a subset of rows from relation. – Projection ( ) Deletes.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Evaluation of Relational Operations Chapter 14, Part A (Joins)
1 Overview of Query Evaluation Chapter Outline  Query Optimization Overview  Algorithm for Relational Operations.
Relational Operator Evaluation. Application Programmer (e.g., business analyst, Data architect) Sophisticated Application Programmer (e.g., SAP admin)
Implementation of Relational Operations Jianlin Feng School of Software SUN YAT-SEN UNIVERSITY courtesy of Joe Hellerstein, Mike Franklin, and etc for.
Diskusi-08 Jelaskan dan berikan contoh penggunaan theta join, equijoin, natural join, outer join, dan semijoin The slides for this text are organized into.
Storage and Indexes Chapter 8 & 9
Introduction to Query Optimization
Relational Algebra Chapter 4, Part A
Evaluation of Relational Operations
File Organizations Chapter 8 “How index-learning turns no student pale
Evaluation of Relational Operations: Other Operations
CS222: Principles of Data Management Notes #13 Set operations, Aggregation Instructor: Chen Li.
Database Applications (15-415) DBMS Internals- Part VI Lecture 18, Mar 25, 2018 Mohammad Hammoud.
Relational Operations
CS222P: Principles of Data Management Notes #11 Selection, Projection
Database Applications (15-415) DBMS Internals- Part VII Lecture 19, March 27, 2018 Mohammad Hammoud.
Database Applications (15-415) DBMS Internals- Part VI Lecture 15, Oct 23, 2016 Mohammad Hammoud.
External Sorting The slides for this text are organized into chapters. This lecture covers Chapter 11. Chapter 1: Introduction to Database Systems Chapter.
File Organizations and Indexing
Introduction to Database Systems
Implementation of Relational Operations
Selected Topics: External Sorting, Join Algorithms, …
Relational Algebra Chapter 4, Sections 4.1 – 4.2
Overview of Query Evaluation
Lecture 2- Query Processing (continued)
Overview of Query Evaluation
Overview of Query Evaluation
Implementation of Relational Operations
Lecture 13: Query Execution
CS222P: Principles of Data Management Notes #13 Set operations, Aggregation, Query Plans Instructor: Chen Li.
CS222: Principles of Data Management Notes #11 Selection, Projection
Implementation of Relational Operations
Database Systems (資料庫系統)
Relational Query Optimization (this time we really mean it)
Overview of Query Evaluation
Evaluation of Relational Operations: Other Techniques
CS222/CS122C: Principles of Data Management UCI, Fall 2018 Notes #10 Selection, Projection Instructor: Chen Li.
File Organizations and Indexing
Presentation transcript:

Evaluation of Relational Operations: Other Techniques Chapter 12, Part B The slides for this text are organized into chapters. This lecture covers the second part of Chapter 12. The slides for the first part of Chapter 12 are labeled “Chapter 12, Part A”. Chapter 1: Introduction to Database Systems Chapter 2: The Entity-Relationship Model Chapter 3: The Relational Model Chapter 4 (Part A): Relational Algebra Chapter 4 (Part B): Relational Calculus Chapter 5: SQL: Queries, Programming, Triggers Chapter 6: Query-by-Example (QBE) Chapter 7: Storing Data: Disks and Files Chapter 8: File Organizations and Indexing Chapter 9: Tree-Structured Indexing Chapter 10: Hash-Based Indexing Chapter 11: External Sorting Chapter 12 (Part A): Evaluation of Relational Operators Chapter 12 (Part B): Evaluation of Relational Operators: Other Techniques Chapter 13: Introduction to Query Optimization Chapter 14: A Typical Relational Optimizer Chapter 15: Schema Refinement and Normal Forms Chapter 16 (Part A): Physical Database Design Chapter 16 (Part B): Database Tuning Chapter 17: Security Chapter 18: Transaction Management Overview Chapter 19: Concurrency Control Chapter 20: Crash Recovery Chapter 21: Parallel and Distributed Databases Chapter 22: Internet Databases Chapter 23: Decision Support Chapter 24: Data Mining Chapter 25: Object-Database Systems Chapter 26: Spatial Data Management Chapter 27: Deductive Databases Chapter 28: Additional Topics 1

Simple Selections Of the form FROM Reserves R WHERE R.rname < ‘C%’ Simple Selections Of the form Size of result approximated as size of R * reduction factor; we will consider how to estimate reduction factors later. With no index, unsorted: Must essentially scan the whole relation; cost is M (#pages in R). With an index on selection attribute: Use index to find qualifying data entries, then retrieve corresponding data records. (Hash index useful only for equality selections.) 11

Using an Index for Selections Cost depends on #qualifying tuples, and clustering. Cost of finding qualifying data entries (typically small) plus cost of retrieving records (could be large w/o clustering). In example, assuming uniform distribution of names, about 10% of tuples qualify (100 pages, 10000 tuples). With a clustered index, cost is little more than 100 I/Os; if unclustered, upto 10000 I/Os! Important refinement for unclustered indexes: 1. Find qualifying data entries. 2. Sort the rid’s of the data records to be retrieved. 3. Fetch rids in order. This ensures that each data page is looked at just once (though # of such pages likely to be higher than with clustering). 12

General Selection Conditions (day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3 Such selection conditions are first converted to conjunctive normal form (CNF): (day<8/9/94 OR bid=5 OR sid=3 ) AND (rname=‘Paul’ OR bid=5 OR sid=3) We only discuss the case with no ORs (a conjunction of terms of the form attr op value). An index matches (a conjunction of) terms that involve only attributes in a prefix of the search key. Index on <a, b, c> matches a=5 AND b= 3, but not b=3. 13

Two Approaches to General Selections First approach: Find the most selective access path, retrieve tuples using it, and apply any remaining terms that don’t match the index: Most selective access path: An index or file scan that we estimate will require the fewest page I/Os. Terms that match this index reduce the number of tuples retrieved; other terms are used to discard some retrieved tuples, but do not affect number of tuples/pages fetched. Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree index on day can be used; then, bid=5 and sid=3 must be checked for each retrieved tuple. Similarly, a hash index on <bid, sid> could be used; day<8/9/94 must then be checked. 14

Intersection of Rids Second approach (if we have 2 or more matching indexes that use Alternatives (2) or (3) for data entries): Get sets of rids of data records using each matching index. Then intersect these sets of rids (we’ll discuss intersection soon!) Retrieve the records and apply any remaining terms. Consider day<8/9/94 AND bid=5 AND sid=3. If we have a B+ tree index on day and an index on sid, both using Alternative (2), we can retrieve rids of records satisfying day<8/9/94 using the first, rids of recs satisfying sid=3 using the second, intersect, retrieve records and check bid=5. 15

The Projection Operation SELECT DISTINCT R.sid, R.bid FROM Reserves R An approach based on sorting: Modify Pass 0 of external sort to eliminate unwanted fields. Thus, runs of about 2B pages are produced, but tuples in runs are smaller than input tuples. (Size ratio depends on # and size of fields that are dropped.) Modify merging passes to eliminate duplicates. Thus, number of result tuples smaller than input. (Difference depends on # of duplicates.) Cost: In Pass 0, read original relation (size M), write out same number of smaller tuples. In merging passes, fewer tuples written out in each pass. Using Reserves example, 1000 input pages reduced to 250 in Pass 0 if size ratio is 0.25 16

Projection Based on Hashing Partitioning phase: Read R using one input buffer. For each tuple, discard unwanted fields, apply hash function h1 to choose one of B-1 output buffers. Result is B-1 partitions (of tuples with no unwanted fields). 2 tuples from different partitions guaranteed to be distinct. Duplicate elimination phase: For each partition, read it and build an in-memory hash table, using hash fn h2 (<> h1) on all fields, while discarding duplicates. If partition does not fit in memory, can apply hash-based projection algorithm recursively to this partition. Cost: For partitioning, read R, write out each tuple, but with fewer fields. This is read in next phase. 17

Discussion of Projection Sort-based approach is the standard; better handling of skew and result is sorted. If an index on the relation contains all wanted attributes in its search key, can do index-only scan. Apply projection techniques to data entries (much smaller!) If an ordered (i.e., tree) index contains all wanted attributes as prefix of search key, can do even better: Retrieve data entries in order (index-only scan), discard unwanted fields, compare adjacent tuples to check for duplicates. 18

Set Operations Intersection and cross-product special cases of join. Union (Distinct) and Except similar; we’ll do union. Sorting based approach to union: Sort both relations (on combination of all attributes). Scan sorted relations and merge them. Alternative: Merge runs from Pass 0 for both relations. Hash based approach to union: Partition R and S using hash function h. For each S-partition, build in-memory hash table (using h2), scan corr. R-partition and add tuples to table while discarding duplicates. 19

Aggregate Operations (AVG, MIN, etc.) Without grouping: In general, requires scanning the relation. Given index whose search key includes all attributes in the SELECT or WHERE clauses, can do index-only scan. With grouping: Sort on group-by attributes, then scan relation and compute aggregate for each group. (Can improve upon this by combining sorting and aggregate computation.) Similar approach based on hashing on group-by attributes. Given tree index whose search key includes all attributes in SELECT, WHERE and GROUP BY clauses, can do index-only scan; if group-by attributes form prefix of search key, can retrieve data entries/tuples in group-by order. 20

Impact of Buffering If several operations are executing concurrently, estimating the number of available buffer pages is guesswork. Repeated access patterns interact with buffer replacement policy. e.g., Inner relation is scanned repeatedly in Simple Nested Loop Join. With enough buffer pages to hold inner, replacement policy does not matter. Otherwise, MRU is best, LRU is worst (sequential flooding). Does replacement policy matter for Block Nested Loops? What about Index Nested Loops? Sort-Merge Join? 21

Summary A virtue of relational DBMSs: queries are composed of a few basic operators; the implementation of these operators can be carefully tuned (and it is important to do this!). Many alternative implementation techniques for each operator; no universally superior technique for most operators. Must consider available alternatives for each operation in a query and choose best one based on system statistics, etc. This is part of the broader task of optimizing a query composed of several ops. 22