Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors

Slides:



Advertisements
Similar presentations
Magnetism of the ‘11’ iron-based superconductors parent compound Fe1+xTe: The Mössbauer study A. Błachowski1, K. Ruebenbauer1, P. Zajdel2, E.E. Rodriguez3,
Advertisements

Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy Tao Wu et. al. Nature 477, 191 (2011). Kitaoka Lab. Takuya.
CZUŁOŚĆ SPEKTROSKOPII MÖSSBAUEROWSKIEJ NA PRZEJŚCIE DO NADPRZEWODNICTWA W Ba 0.6 K 0.4 Fe 2 As 2 1 Zakład Spektroskopii Mössbauerowskiej, Instytut Fizyki,
A. Błachowski1, K. Ruebenbauer1, J. Żukrowski2, and Z. Bukowski3
First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
Space group symmetry, spin-orbit coupling and the low energy effective Hamiltonian for iron based superconductors (arXiv: ) Vladimir Cvetkovic.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
High Temperature Superconductivity: D. Orgad Racah Institute, Hebrew University, Jerusalem Stripes: What are they and why do they occur Basic facts concerning.
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
P461 - Semiconductors1 Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T=300) Ag mOhms/m Cu
Spin dependent tunneling in junctions involving normal and superconducting CDW metals A.M. Gabovich and A.I. Voitenko (Institute of Physics, Kyiv, Ukraine)
Subir Sachdev arXiv: Subir Sachdev arXiv: Loss of Neel order in insulators and superconductors Ribhu Kaul Max Metlitski Cenke Xu.
Wendy Xu 286G 5/28/10.  Electrical resistivity goes to zero  Meissner effect: magnetic field is excluded from superconductor below critical temperature.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
HARMONICALLY MODULATED STRUCTURES S. M. Dubiel * Faculty of Physics and Computer Science, AGH University of Science and Technology, PL Krakow, Poland.
Semiconductors n D*n If T>0
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Electron Spin Resonance Spectroscopy
Corey Thompson Technique Presentation 03/21/2011
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
Nonisovalent La substitution in LaySr14-y-xCaxCu24O41: switching the transport from ladders.
1 Superconductivity  pure metal metal with impurities 0.1 K Electrical resistance  is a material constant (isotopic shift of the critical temperature)
Impurity effect on charge and spin density on the Fe nucleus in BCC iron A. Błachowski 1, U.D. Wdowik 2, K. Ruebenbauer 1 1 Mössbauer Spectroscopy Division,
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
NMR study on bismuth oxide superconductor BaPb x Bi 1-x O 3 H. Matsuura and K. Miyake, J. Phys. Soc. Jpn. 81 (2012) Kitaoka Lab. Takashi MATSUMURA.
An Introduction to Fe-based superconductors
会社名など E. Bauer et al, Phys. Rev. Lett (2004) M. Yogi et al. Phys. Rev. Lett. 93, (2004) Kitaoka Laboratory Takuya Fujii Unconventional.
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
The Structure and Dynamics of Solids
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Emergent Nematic State in Iron-based Superconductors
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
Superconducting Cobaltites Nick Vence. Definition A material which looses its electrical resistivity below a certain temperature (Tc)is said to be superconducting.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetism of the regular and excess iron in Fe1+xTe
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
SNS Experimental FacilitiesOak Ridge X /arb Spin dynamics in cuprate superconductors T. E. Mason Spallation Neutron Source Project Harrison Hot Springs.
MÖSSBAUER STUDY OF NON-ARSENIC IRON-BASED SUPERCONDUCTORS AND THEIR PARENT COMPOUNDS K. Komędera 1, A. K. Jasek 1, A. Błachowski 1, K. Ruebenbauer 1, J.
Mossbauer spectroscopy
Particle Size Dependence of Magnetic Properties in Cobalt Ferrite Nanoparticles Jun Hee Cho 1, Sang Gil Ko 1, Yang kyu Ahn 1, Eun Jung Choi 2 * 1 Department.
Muons in condensed matter research Tom Lancaster Durham University, UK.
Phase Diagram of Ruthenate: Ca2-xSrxRuO4 (CSRO) (0. 0<x<2
University of Ioannina
ARPES studies of cuprates
Phase diagram of FeSe by nematic ultrafast dynamics
NMR: Theory and Equivalence
Electric quadrupole interaction in cubic BCC α-Fe
Jim Crittenden Electron Cloud/Impedance Meeting 27 May 2015
Hyperfine interaction studies in Manganites
Special Romp session, LT25
Anisotropic superconducting properties
Phase diagram of s-wave SC Introduction
Superconductivity Res. T
151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2
Specific heat of iron-based high-Tc superconductors
References La1111, 4.2 K, H//c and H//ab: M. Kidszun et al. Critical Current Scaling and Anisotropy in Oxypnictide Superconductors, Phys. Rev. Lett. 106,
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Spectroscopy of solar prominences simultaneously from space and ground
Z. Leśnikowski, E. Przelazły, K. Dziedzic-Kocurek, J. Stanek
Ion-beam, photon and hyperfine methods in nano-structured materials
Presentation transcript:

Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors K. Komędera1, A. Błachowski1, K. Ruebenbauer1, K. Z. Takahashi2, T. J. Sato2 1 Mössbauer Spectroscopy Laboratory, Institute of Physics, Pedagogical University, Kraków, Poland 2 Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- XII Ogólnopolskie Seminarium Spektroskopii Mössbauerowskiej OSSM’2018 Goniądz, 17-20 czerwca 2018

________”122” Fe-based Superconducting Family________ AFe2As2 (A = Ca, Sr, Ba, Eu) ______________Parent compound______________ BaFe2As2 TSDW = 136 K _________Superconductors_________ Ba1-xKxFe2As2 Ba(Fe1-xCox)2As2 BaFe2(As1-xPx)2 hole-doping electron-doping isovalent-substitution x = 0.40 x = 0.08 x = 0.31 Tsc = 38 K Tsc = 24 K Tsc = 31 K Ba1-xKxFe2As2 Ba(Fe1-xCox)2As2  K  Co  P x Rev. Mod. Phys. 87, 855 (2015)

Charge density wave (CDW) - spatial modulation of the electron charge density, seen by distribution of isomer shift Electric field gradient wave (EFGW) - spatial modulation of the electric field gradient, seen by distribution of quadrupole splitting Spin density wave (SDW) - spatial modulation of the electron spin density, seen by distribution of hyperfine magnetic field

CDW , EFGW and SDW as seen by Mössbauer Spectroscopy Γ – absorber line width 0.7 el./Bohr3 5.7 1021 V/m2 Charge and spin density modulations causes specific broadening of the Mössbauer absorption line. For CDW one can estimate dispersion (around average value) of the electron density  – unbroadened line width – calibration constant

Electric field gradient wave (EFGW) as seen by Mössbauer Spectroscopy  - quadrupole coupling constant with q  r

Electric field gradient wave (EFGW) as seen by Mössbauer Spectroscopy  - quadrupole coupling constant with 57Fe Mössbauer spectra Distributions of quadrupole shift Shape of EFGW

57Fe Mössbauer spectra of BaFe2As2 parent compound and Ba0. 6K0 57Fe Mössbauer spectra of BaFe2As2 parent compound and Ba0.6K0.4Fe2As2 superconductor SDW 1.7 T 2.5 T 3.2 T 3.7 T 4.0 T 5.3 T Difference in total molar specific heat coefficients between superconductor and parent compound. Inset shows electronic specific heat coefficient of superconductor. 7

57Fe Mössbauer spectra of the Ba0.6K0.4Fe2As2 (TSC = 38 K) across transition to the superconducting state. Difference in total molar specific heat coefficients between superconductor and parent compound. Inset shows electronic specific heat coefficient of superconductor.

Ba0.6K0.4Fe2As2 (TSC = 38 K) EFG 1 mm/s  5.7 1021 V/m2 Mössbauer parameters: S – spectrum shift versus α-Fe Δ0 – constant component of quadrupole splitting Γ – absorber line width Shape of EFGW electric field gradient wave (d electrons density variation) Relative recoilless fraction f/f0 (normalized to f0 at 4.2 K) Dispersion of CDW charge density wave (s electrons density variation) EFG 1 mm/s  5.7 1021 V/m2

57Fe Mössbauer spectra of SmFeAsO0.91F0.09 (Tsc ≈ 47 K) across transition to the superconducting state Resistivity Magnetic susceptibility

charge density modulation changes during superconducting transition in Comparison between charge density modulation changes during superconducting transition in Ba0.6K0.4Fe2As2 Tsc = 38 K SmFeAsO0.91F0.09 Tsc = 47 K (hole doping) (electron doping) EFGW EFGW CDW CDW  K

charge density modulation changes during superconducting transition in Comparison between charge density modulation changes during superconducting transition in Ba0.6K0.4Fe2As2 Tsc = 38 K SmFeAsO0.91F0.09 Tsc = 47 K (hole doping) (electron doping) EFGW EFGW CDW CDW 1) Mössbauer spectroscopy sees CDW in Fe-SC. 2) CDW modulation is perturbed at Tsc-onset and returns to the modulation from the normal state below Tsc-offset (=0). 3) Direction of CDW perturbation depends on … type of doping (?)  K

BaFe2(As1-xPx)2 Our samples: x = 0 hPn = 1.36Å x = 0.30 hPn = 1.28Å S. Kasahara et al., NATURE 486, 382 (2012) Our samples: x = 0 , 0.10 , 0.31 , 0.33 , 0.53 , 0.70 , 0.77 parent under-doped superconductors over-doped

BaFe2(As1-xPx)2 TSDW = 136 K TSDW = 106 K TSC = 27.3 K TSC = 27.6 K TSC = 13.9 K

BaFe2(As1-xPx)2 x = 0.10 TSDW = 106 K Mössbauer parameters: S spectrum shift Γ line width B magnetic hyperfine field 1.8 T 0.5 T 2.4 T 1.4 T 3.1 T 1.6 T 3.6 T K.Z. Takahashi, D. Okuyama, T.J. Sato, J. Cryst. Growth 446, 39 (2016) 4.1 T

BaFe2(As1-xPx)2 x = 0.10 TSDW = 106 K Mössbauer parameters: S spectrum shift Γ line width B magnetic hyperfine field Nematic phase is characterized by electronic anisotropy in a-b plane with broken rotational symmetry but preserved translational symmetry (tetragonal phase). Nematic phase shows residual magnetic order in tetragonal structure with transition to the paramagnetic phase at about 140 K, so about 30 K higher than SDW order and orthorhombic distortion. 1.8 T 0.5 T 2.4 T 1.4 T 3.1 T 1.6 T 3.6 T K.Z. Takahashi, D. Okuyama, T.J. Sato, J. Cryst. Growth 446, 39 (2016) 4.1 T

BaFe2(As1-xPx)2 x = 0.33 Tsc = 27.6 K Mössbauer parameters: S – spectrum shift versus α-Fe Δ – quadrupole splitting Γ – absorber line width  0.20 mm/s  0.23 mm/s  x = 0.33  x = 0.53  x = 0.70  0.30 mm/s  0.35 mm/s

BaFe2(As1-xPx)2 x = 0.33 Tsc = 27.6 K Mössbauer parameters: S – spectrum shift versus α-Fe Δ – quadrupole splitting Γ – absorber line width  0.20 mm/s Traces of magnetic order in superconducting state due to … vicinity of the quantum critical point … or coexistence (?)  0.23 mm/s  x = 0.33  x = 0.53  x = 0.70  0.30 mm/s  0.35 mm/s

BaFe2(As1-xPx)2 x = 0.53 Tsc = 13.9 K Γ – absorber line width    1 mm/s  3.5 el./Bohr3

BaFe2(As1-xPx)2 x = 0.53 Tsc = 13.9 K Oscillations of the spectral line-width vs. temperature due to varying electronic charge modulation. One gets 0.2 el./(Bohr radius)3 electron density oscillation on the iron nuclei across formation of the superconducting state. Γ – absorber line width  x = 0.33  x = 0.53  x = 0.70    1 mm/s  3.5 el./Bohr3

Conclusions The Mössbauer spectroscopy is sensitive to the superconducting transition in Fe-based superconductors via change of the electron charge density modulation, which is seen via dispersion of isomer shift (CDW caused by s electrons) and via distribution of electric field gradient (EFGW caused by d electrons). Shape and amplitude of EFGW and CDW are strongly perturbed at the superconducting transition. Namely, all modulations are strongly changed at critical temperature due to the superconducting gap opening and subsequent formation of Cooper pairs. However dispersion of the charge density and EFGW shape behave in the different ways.