Volume 13, Issue 9, Pages (September 2006)

Slides:



Advertisements
Similar presentations
Volume 23, Issue 4, Pages (April 2016)
Advertisements

Volume 23, Issue 4, Pages (April 2016)
Volume 19, Issue 9, Pages (September 2012)
Mechanism and Substrate Recognition of Human Holo ACP Synthase
Volume 20, Issue 10, Pages (October 2013)
Volume 17, Issue 4, Pages (April 2010)
Volume 17, Issue 4, Pages (April 2010)
Volume 20, Issue 6, Pages (June 2013)
Volume 13, Issue 4, Pages (April 2006)
Volume 17, Issue 2, Pages (February 2010)
Volume 13, Issue 11, Pages (November 2006)
An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide  Cheng Wang, Shane.
Volume 10, Issue 9, Pages (September 2003)
Mechanism of Thioesterase-Catalyzed Chain Release in the Biosynthesis of the Polyether Antibiotic Nanchangmycin  Tiangang Liu, Xin Lin, Xiufen Zhou, Zixin.
Volume 13, Issue 3, Pages (March 2006)
Volume 12, Issue 8, Pages (August 2005)
Volume 18, Issue 10, Pages (October 2011)
Volume 19, Issue 2, Pages (February 2012)
Volume 22, Issue 10, Pages (October 2015)
Volume 14, Issue 5, Pages (May 2007)
Volume 10, Issue 5, Pages (May 2003)
Volume 19, Issue 9, Pages (September 2012)
Volume 15, Issue 8, Pages (August 2008)
Gracjan Michlewski, Sonia Guil, Colin A. Semple, Javier F. Cáceres 
Identification and Characterization of the Lysobactin Biosynthetic Gene Cluster Reveals Mechanistic Insights into an Unusual Termination Module Architecture 
Interaction with PCNA Is Essential for Yeast DNA Polymerase η Function
Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis  Anna L. Vagstad, Eric A. Hill, Jason W.
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Yit-Heng Chooi, Ralph Cacho, Yi Tang  Chemistry & Biology 
Insights into the Generation of Structural Diversity in a tRNA-Dependent Pathway for Highly Modified Bioactive Cyclic Dipeptides  Tobias W. Giessen, Alexander M.
Volume 13, Issue 5, Pages (May 2006)
Volume 21, Issue 10, Pages (October 2014)
Yi-Ling Du, Doralyn S. Dalisay, Raymond J. Andersen, Katherine S. Ryan 
Sherry S. Lamb, Tejal Patel, Kalinka P. Koteva, Gerard D. Wright 
Structure-Based Dissociation of a Type I Polyketide Synthase Module
Volume 18, Issue 5, Pages (May 2011)
Johnson Cheung, Michael E.P. Murphy, David E. Heinrichs 
PqsE of Pseudomonas aeruginosa Acts as Pathway-Specific Thioesterase in the Biosynthesis of Alkylquinolone Signaling Molecules  Steffen Lorenz Drees,
Volume 10, Issue 11, Pages (November 2003)
Volume 16, Issue 5, Pages (May 2009)
Volume 10, Issue 5, Pages (May 2003)
Volume 11, Issue 11, Pages (November 2004)
Evidence for a Protein-Protein Interaction Motif on an Acyl Carrier Protein Domain from a Modular Polyketide Synthase  Kira J. Weissman, Hui Hong, Bojana.
Volume 15, Issue 5, Pages (May 2008)
Volume 12, Issue 11, Pages (November 2005)
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
Volume 9, Issue 2, Pages (February 2002)
Volume 22, Issue 6, Pages (June 2015)
Volume 15, Issue 6, Pages (June 2008)
Structural Basis for Phosphopantetheinyl Carrier Domain Interactions in the Terminal Module of Nonribosomal Peptide Synthetases  Ye Liu, Tengfei Zheng,
Volume 18, Issue 4, Pages (April 2011)
Volume 16, Issue 5, Pages (May 2009)
Volume 13, Issue 3, Pages (March 2006)
Gerald Lackner, Markus Bohnert, Jonas Wick, Dirk Hoffmeister 
Cdc28-Dependent Regulation of the Cdc5/Polo Kinase
Volume 24, Issue 2, Pages (February 2017)
Leinamycin Biosynthesis Revealing Unprecedented Architectural Complexity for a Hybrid Polyketide Synthase and Nonribosomal Peptide Synthetase  Gong-Li.
Volume 13, Issue 3, Pages (March 2006)
Volume 21, Issue 9, Pages (September 2014)
Volume 14, Issue 6, Pages (June 2007)
Volume 18, Issue 8, Pages (August 2011)
Ali Sadeghi-Khomami, Michael D. Lumsden, David L. Jakeman 
Volume 15, Issue 4, Pages (October 2008)
Excision of the Drosophila Mariner Transposon Mos1
Interdomain Communication between the Thiolation and Thioesterase Domains of EntF Explored by Combinatorial Mutagenesis and Selection  Zhe Zhou, Jonathan.
Volume 14, Issue 9, Pages (September 2007)
Nonribosomal Biosynthesis of Fusaricidins by Paenibacillus polymyxa PKB1 Involves Direct Activation of a d-Amino Acid  Jingru Li, Susan E. Jensen  Chemistry.
Volume 13, Issue 3, Pages (March 2006)
Volume 21, Issue 9, Pages (September 2014)
Volume 22, Issue 6, Pages (June 2015)
Presentation transcript:

Volume 13, Issue 9, Pages 945-955 (September 2006) Identification of NanE as the Thioesterase for Polyether Chain Release in Nanchangmycin Biosynthesis  Tiangang Liu, Delin You, Chiara Valenzano, Yuhui Sun, Jialiang Li, Qing Yu, Xiufen Zhou, David E. Cane, Zixin Deng  Chemistry & Biology  Volume 13, Issue 9, Pages 945-955 (September 2006) DOI: 10.1016/j.chembiol.2006.07.006 Copyright © 2006 Elsevier Ltd Terms and Conditions

Figure 1 Proposed Final Steps of Nanchangmycin Biosynthesis Three suspected factors (CR, TE II, and NanE) responsible for releasing the polyether chain from NANS are indicated with a question mark (?). Chemistry & Biology 2006 13, 945-955DOI: (10.1016/j.chembiol.2006.07.006) Copyright © 2006 Elsevier Ltd Terms and Conditions

Figure 2 In-Frame Deletion of 61 aa from the CR Domain to Generate the ΔCR Mutant SL1 and a 186 aa Deletion in NanE to Generate a ΔnanE Mutant LTG10 in S. nanchangensis NS3226 The desired mutations were confirmed by PCR analysis (shown at right side of each mutation). Lanes 1, 2, and 3 show PCR with three individuals for each mutant (SL1-3 for SL1, and LTG10-1-3 for LTG10) as templates, respectively. Lane 4 is the PCR analysis with wild-type NS3226 as the control, and lane 5 is the DNA size standard. Chemistry & Biology 2006 13, 945-955DOI: (10.1016/j.chembiol.2006.07.006) Copyright © 2006 Elsevier Ltd Terms and Conditions

Figure 3 Detection of Nanchangmycin Productivity Using Different Mutants by Bio-Assay Using Bacillus cereus 1126 as an Indicator Strain and by LC/MS The peak corresponding to nanchangmycin A (Rt = 17 min) was identified by its m/z [M+Na+] = 889.5, whose presence correlated with the observed inhibition zone. Chemistry & Biology 2006 13, 945-955DOI: (10.1016/j.chembiol.2006.07.006) Copyright © 2006 Elsevier Ltd Terms and Conditions

Figure 4 SDS-PAGE Analysis of the Purified Proteins Carrying CR, ACP-CR, NanE from S. nanchangensis NS3226, MonAX from S. cinnamonensis, and DEBS TE from S. erythraeas Lane 1 in each column is the respective protein size standards. The detected sizes for proteins carrying CR (ca. 18 kDa) and ACP-CR (ca. 28 kDa) reverted to their predicted sizes (CR = 13,347.0 Da, and ACP-CR = 21,575.9 Da) after storage overnight in buffer containing 2 mM EDTA (not shown). Chemistry & Biology 2006 13, 945-955DOI: (10.1016/j.chembiol.2006.07.006) Copyright © 2006 Elsevier Ltd Terms and Conditions

Figure 5 Detection of Hydrolytic Activity of NanE toward SNAC Esters (A) Hydrolysis of diketide-SNAC (top of [A]) could be detected with MonAX and DEBS TE in the presence of DTNB, but the rate is very low with NanE (5 mM substrate). (B) Hydrolysis of nanchangmycin-SNAC (top left of [B]) into nanchangmycin (top right of [B]) could be detected by HPLC/MS for NanE, but not with DEBS TE, MonAX, ACP-CR, or CR. (C) Kinetic analysis of in vitro hydrolysis of nanchangmycin-SNAC (38.4 μM) by His6-NanE. The amount of nanchangmycin (solid circle) produced at each time point was quantitated by RP-HPLC. The initial velocity (V0) was calculated to be 3.1 × 10−2 nmol/min. Chemistry & Biology 2006 13, 945-955DOI: (10.1016/j.chembiol.2006.07.006) Copyright © 2006 Elsevier Ltd Terms and Conditions

Figure 6 Phylogenetic Tree Geneterated Using MEGA 3.1 Representing the Apparent Evolutionary Distances of Thioesterases and Other α/β Hydrolases NysE, a type II TE in nystatin cluster, AF263912; PimI, a type II TE in pimaricin cluster, AJ278573; FscTE, a type II TE in candicidin cluster, AY310323; RifR, a type II TE in rifamycin cluster, AF040570; MonAX and MonAIX, two type II TE in monensin cluster, AF440781; PikAV, a type II TE in methymycin/pikromycin cluster, AF079138; EryTII, a type II TE in erythromycin cluster, AY623658; TycF, a type II TE in tyrocidine NRPS cluster, AF004835; SrfD, a type II TE in surfactin NRPS cluster, AF233756; DEBS TE, a type I TE in erythromycin cluster, X62569; PICS TE, a type I TE in methymycin/pikromycin cluster, AF079138; Averm TE, a type I TE in avermectin cluster, NC_003155; Ampho TE, a type I TE in amphotericin B cluster, AF357202; PimTE, a type I TE in pimaricin cluster, AJ278573; Mycos TE, a type I TE in a NRPS/PKS hybrid mycosubtilin cluster, AF184956; Iturin TE, a type I TE in NRPS/PKS hybrid Iturin cluster, AB050629; Surfa TE, a type I TE in NRPS surfactin cluster, AF233756; Bacit TE, a type I TE in NRPS bacitracin cluster, AB016966; Tyroc TE, a type I TE in NRPS tyrocidine cluster, AF004835; Actino TE, a type I TE in NRPS actinomycin cluster, AF047717; Burkholderia thailandensis E264 epoxide hydrolase, DQ269811; Pseudomonas aurantiaca epoxide hydrolase, BX571966; Streptomyces avermitilis MA-4680 α/β hydrolase, NC_003155; Trichodesmium erythraeum IMS101 α/β hydrolase, CP000393; Acidothermus cellulolyticus 11B α/β hydrolase, ZP_01136818; MonCII, thioesterase in monensin cluster, AF440781; NanE, thioesterase in nanchangmycin cluster, AF521085; NigCII, DQ354110. Chemistry & Biology 2006 13, 945-955DOI: (10.1016/j.chembiol.2006.07.006) Copyright © 2006 Elsevier Ltd Terms and Conditions

Figure 7 Multiple Alignment of NanE with Other Representative α/β Hydrolases A conserved GHSXG motif, including the strictly conserved active site Ser is underlined in all members of the α/β hydrolyase family including NanE and type I or II TE, and the characteristic Ser, His, Asp catalytic triad of DEBS TE is highlighted by asterisks. Chemistry & Biology 2006 13, 945-955DOI: (10.1016/j.chembiol.2006.07.006) Copyright © 2006 Elsevier Ltd Terms and Conditions