Supplementary Table S1. Yield and phenological parameters of 12 soybean cultivars grown under two [CO2] levels in two years: aCO2, ambient [CO2]; eCO2,

Slides:



Advertisements
Similar presentations
Soybean Growth and Development
Advertisements

Soybean seed quality response among maturity groups to planting dates in the Midsouth Larry C. Purcell & Montserrat Salmeron MidSouth Soybean Board Meeting,
Hazards of Temperature-increase on Food Availability in Changing Environments: Global Warming Could Cause Failure of Seed Yields of Major Crops L. H. Allen,
Simulating Cropping Systems in the Guinea Savanna Zone of Northern Ghana with DSSAT-CENTURY J. B. Naab 1, Jawoo Koo 2, J.W. Jones 2, and K. J. Boote 2,
Response of Early and Late Maturing Peanut Cultivars to Sowing Densities and Fungicide Application in Ghana Jesse B. Naab 1, P.V. Vara Prasad 2*, Kenneth.
© Crown copyright Met Office 2011 Climate impacts on UK wheat yields using regional model output Jemma Gornall 1, Pete Falloon 1, Kyungsuk Cho 2,, Richard.
The mechanism of productivity formation of alpine meadow ecosystem Dr Xinquan Zhao Northwest Plateau Institute of Biology, The Chinese Academy of Sciences,
Development of a rice growth model for early warning and decision support systems Agriculture and Food Research Organization (NARO) Japan National Agricultural.
Results and discussion Results and Discussion Figure 3. Observed (symbols) and simulated (lines) V-Stages of soybean cultivars (MG 3.0 to 3.9) grown at.
Application to the rice production in Southeast Asia Rice Production Research Program Agro-meteorology Division National Institute for Agro-Environmental.
Mladen Todorovic & Rossella Albrizio (CIHEAM-IAMB, Italy) Ljubomir Zivotic (Institute for Water Management “Jaroslav Cerni”, Belgrade, Serbia) Deficit.
Impacts of Climate Change on Corn and Soybean Yields in China Jintao Xu With Xiaoguang Chen and Shuai Chen June 2014.
Physiological Maturity and Effect of Seed Priming on Germination Ability of Vegetable Soybean (Glycine max (L.) Merrill) Aye Nwe Win 1 (Master of Science.
 Genetic diversity of oligosaccharides in USDA pea germplasm › Set I: wrinkled green pea germplasm › Harvested at green processing stage  Identify diversity.
A General Plant Model. SWAT Model Simulates plant growth through leaf area, light interception, biomass production and stress simulation Water balance,
Vulnerability and Adaptation Assessments Hands-On Training Workshop Impact, Vulnerability and Adaptation Assessment for the Agriculture Sector – Part 2.
Nutrient availability Temperature Daylength Solar radiation Soil moisture/ RainIrrigation Fertilizer Population Sowing date Cultivar Mineral nutrition.
Spacing between plants Tillers plant DAP Standard error Tillers plant DAP Standard error Tillers plant DAP Standard error Tillers plant.
Crop adaptation to future climates: Climate ready wheat Jairo A Palta CSIRO - Principal Research Scientist – Adjunct Research Professor, UWA 21 Nov 2014.
With the rise of the energy crisis, much attention is being paid to biofuel crop. Switchgrass (Panicum virgatum) is one of the prospective plants for cellulosic.
Enhanced Ecosystem Productivity in Cloudy or Aerosol-laden Conditions Xin Xi April 1, 2008.
An Application of Field Monitoring Data in Estimating Optimal Planting Dates of Cassava in Upper Paddy Field in Northeast Thailand Meeting Notes.
CLIMATE CHANGE AND PRECIPITATION NEEDS OF WINTER WHEAT Éva Erdélyi, Corvinus University of Budapest Levente Horváth, University of Debrecen
Use of ethylenediurea (EDU) as a research tool in assessing the impact of ambient ozone on plants Madhoolika Agrawal Professor in Botany Department of.
Climate impacts on UK wheat yields using regional model output
Effect of microalgal biomass from MACC-612 Nostoc enthophytum and MACC-430 Tetracystis sp. on sunflower production P. Pőthe 1, I. Gergely 1, V.Ördög 1,2.
Introduction to plant modelling. Phenology Most important stages: Sowing, Flowering & Maturity. Each phase develops through cumulative thermal time, can.
Overexpression of sweetpotato expansin cDNA (IbEXP1) increases seed yield in Arabidopsis Jung Myung Bae 1, *, Man Sup Kwak 1, Seol Ah Noh 1, Mi-Joung Oh.
Development of Vegetation Indices as Economic Thresholds for Control of Defoliating Insects of Soybean James BoardVijay MakaRandy PriceDina KnightMatthew.
Yield Loss Prediction Tool for Field-Specific Risk Management of Asian Soybean Rust S. Kumudini, J. Omielan, C. Lee, J. Board, D. Hershman and C. Godoy.
CASIROZ Fall Meeting Cambridge 2004 Participant group 2 Manuela C. Blumenröther W. Oßwald Forest Phytopathology, TU Munich.
Plant Specific Fertilization NUEWorkshop Paul Hodgen.
Evaluation of Diverse Endophyte Strains for Effects on Tall Fescue Drought Tolerance Mioko Tamura and C.P. West Crop, Soil & Environmental Sciences, Univ.
Soybean Maturity Groups and Selection
Fig. 6-CO, p p. 185a p. 185b p. 185c p. 185d.
대기 중 CO 2 변화에 따른 토양 CO 2 방출량 변화 ( DYNAMICS OF SOIL CO 2 EFFLUX UNDER VARYING ATMOSPHERIC CO 2 CONCENTRATIONS ) Dohyoung Kim Duke University July
CERES-Wheat a dynamic model to simulate the effects of cultivar, planting density, weather, soil water and nitrogen on crop growth, development and yield.
Chapter 1: BIOMASS RESOURCES & CHARACTERISTICS OF BIOFUELS
“Estimated” Corn Field Drying
The Effect of Psg on Soybean Phenology
Fig. S1 Gene expression profiling of OsSUS3 in life cycle of rice.
Antisense Suppression of the Small Chloroplast Protein CP12 in Tobacco Alters Carbon Partitioning and Severely Restricts Growth by Thomas P. Howard, Michael.
Fig. 1. Assessment of drought tolerance of Arabidopsis thaliana C24
PRESESNTED BY: Vandana H M
Effect on oxalate and calcium levels of spinach and silver beet grown in ambient CO ppm and enhanced CO ppm conditions Madhuri Kanala and.
COSMO Priority Project ”Quantitative Precipitation Forecasts”
Punjab Agricultural University, Ludhiana , Punjab, India
(L, C and X) and Full-polarization
Jianmin Zhang1, Timothy J. Griffis1 and John M. Baker2
Obtaining and Using USDA Market and Production Reports
Maintenance Respiration
What Is Up with Soybean Yields?
الفصل الثانى فول الصويا Soybean العائلة البقولية Fabaceae الإسم العلمى Glycine max, L. (Merr) الإسم الإنجليزى Soybean.
France - 15% on cured leaf; 10% on plants for breeder’s seed
State Climate Office Drought Update
Evangelos Gonias, Derrick Oosterhuis, Androniki Bibi and Bruce Roberts
Filled Grains/ Panicle
John McGillicuddy
EXPERIENCE WITH LI-6400 PORTABLE PHOTOSYNTHESIS SYSTEM
Fig. 6-CO, p. 211.
07CO, p. 190.
ID: 154 Mirza Mofazzal Islam, PhD Chief Scientific Officer and Head
Crop Growth Model Simulation of G2F Common Hybrids
R.M. Merchant*, E.P. Prostko, P.M. Eure, and T.M. Webster
Relationship Between Root Biomass and Water – Nitrogen Uptake and Grain Yield in Bread Wheat ‘Pavon 76’ and Its 1RS Translocation Lines J.G. Waines1,
Fig. 1 Biomass over time of C3 grasses and C4 grasses at ambient and elevated CO2. Biomass over time of C3 grasses and C4 grasses at ambient and elevated.
Variation in rosette leaf area and leaf surface temperatures in Arabidopsis accessions and Arabidopsis lines ectopically expressing different ABA receptors.
Flowering time, biomass, leaf number, and leaf area at flowering of wild-type (WT) and fa plants grown under short- or long-day conditions. Flowering time,
by Sarah J. K. Frey, Adam S. Hadley, Sherri L
Fig. 2 Average reduction in grain micronutrients, iron (Fe), and zinc (Zn) concentration at elevated relative to ambient [CO2] for 18 cultivated rice lines.
Presentation transcript:

Supplementary Table S1. Yield and phenological parameters of 12 soybean cultivars grown under two [CO2] levels in two years: aCO2, ambient [CO2]; eCO2, elevated [CO2]. Ratio represents the difference between eCO2 and aCO2 for the numbers of days from VE to R1 and from R1 to R7, and the ratio of eCO2 to aCO2 for the other parameters. The values are the means of n = 4 or 5 plants. ***P < 0.001; **P < 0.01; *P < 0.05; +P < 0.1; ns, not significant. Cultivar CO2treatmet Aboveground biomass (g plan-1) Branch number per plant Node number of main stem Harvest index Pod number per plant Pod bumber per aboveground biomass Seed number per pod Single seed weight (mg) Number of days from VE to R1 Number of days from R1 to R7 Season 2013 2014 Yukihomare aCO2 31.3 38.4 3.3 5.0 9.0 8.8 0.63 0.52 32.3 54.0 1.03 1.41 1.96 1.71 313.0 220.2 29 28 44 55 eCO2 37.8 48.4 4.0 5.3 0.56 36.4 62.3 0.96 1.29 1.85 1.77 308.5 228.4 47 59 Ratio 1.21 1.26 1.23 1.05 0.98 0.88 0.99 1.13 1.15 0.94 0.91 1.04 -1.4 -0.3 2.4 Ohsuzu 63.9 74.9 5.4 6.5 14.0 13.5 0.61 0.59 56.4 64.3 0.86 1.78 1.65 394.8 421.4 38 41 68 75 69.5 84.4 4.8 7.5 13.8 13.3 0.53 0.54 66.5 0.70 0.79 1.84 1.58 411.7 439.5 39 40 71 76 1.09 0.89 0.92 0.95 0.8 -0.8 3.8 1.3 Ryuhou 75.4 78.4 6.4 6.0 14.8 0.58 61.0 63.0 0.81 0.80 1.93 2.02 378.3 355.6 36 62 73 96.0 95.2 14.6 70.6 64.5 0.74 0.68 2.38 375.7 349.8 65 72 1.27 1.00 1.06 0.90 0.97 1.16 1.02 0.84 1.18 -0.4 3.6 -1.0 Enrei 81.1 84.7 7.0 14.2 15.8 65.8 56.0 0.66 2.20 353.0 409.3 45 60 130.0 118.2 6.8 9.3 16.3 0.47 90.0 77.0 0.69 0.65 2.49 364.7 369.1 43 69 1.60 1.40 1.37 1.38 0.85 4.2 1.8 Miyagishirome 107.8 104.6 7.3 16.8 19.3 0.48 69.8 63.5 1.99 1.88 365.9 425.7 52 74 163.5 151.5 8.5 17.4 20.3 0.42 0.50 107.2 92.5 1.80 1.94 350.4 421.3 77 1.52 1.45 1.17 1.54 1.46 1.01 0.4 -0.5 -1.3 Mandarin 31.7 31.1 4.6 13.6 15.0 0.62 43.2 42.5 1.36 1.86 247.2 247.3 26 50 54.6 51.0 15.6 16.5 0.55 0.64 56.8 59.5 2.09 2.08 255.3 261.0 27 54 63 1.72 1.64 1.10 1.31 0.76 1.12 1.11 -0.6 4.5 Dunfield 68.4 64.0 4.4 16.6 17.3 0.51 111.3 1.39 1.74 2.12 1.61 171.4 201.5 89.2 77.8 5.6 8.3 17.2 0.43 97.6 120.3 1.55 2.19 1.57 181.5 212.6 49 58 1.22 1.08 3.0 Athow 62.8 74.0 3.4 18.5 0.60 77.3 2.58 2.50 224.2 245.9 77.4 78.9 3.5 18.6 19.0 67.2 79.3 0.87 2.64 2.47 240.6 250.1 1.07 0.83 0.0 1.0 2.8 Harosoy 54.5 42.1 17.0 67.0 1.59 2.35 2.16 191.5 190.9 85.1 69.3 5.2 5.5 18.8 20.5 100.6 97.0 2.31 2.14 201.2 215.4 1.56 1.50 Harosoy-dt1 35.2 21.7 8.0 0.67 41.0 41.8 1.25 274.7 263.8 66 49.7 32.8 5.8 49.0 52.8 2.26 277.7 270.7 67 1.51 1.44 1.20 0.3 Williams 87.1 74.7 6.3 19.5 70.5 76.0 2.66 2.67 258.7 224.3 35 30 110.6 99.3 21.0 90.5 100.8 0.82 2.89 244.1 223.8 33 1.33 1.28 1.6 2.5 0.6 0.5 Williams-dt1 49.6 56.2 10.8 51.6 71.3 2.41 239.6 206.4 31 83 63.3 60.2 60.0 75.0 2.39 1.92 217.1 32 87 ANOVA CO2 *** ns * ** Cultivar (CV) CO2xCV +

Supplementary Fig. S1. Photosynthetic rate and nonstructural carbohydrate (NSC) content on leaf dry mass base at flowering (A, C) and seed filling stage (B, D) of several soybean cultivars grown under two [CO2] levels in 2014. aCO2, ambient [CO2]; eCO2, elevated [CO2]. Data are means ±SE (n=4). NSC was the sum of starch, sucrose, glucose and fructose.

2014; y = - 0.099 + 1.054 x R2 = 0.961*** 2014; y = - 2.098 + 3.257 x R2 = 0.599** 2013; y = - 2.359 + 3.414 x R2 = 0.725*** 2013; y = - 0.083 + 0.959 x R2 = 0.816*** 2013; y = - 0.215 + 1.609 x R2 = 0.248+ 2014; y = - 0.12 + 1.164 x R2 = 0.872*** 2013; y = 0.243 + 0.817 x R2 = 0.654** 2014; y = - 2.141 + 3.529 x R2 = 0.401* Supplementary Fig. S2. Linear regressions between the relative increase in seed yield (eCO2/ aCO2) with elevated [CO2] and the relative changes in (A) the node number on the main stem, (B) aboveground biomass, (C) harvest index, and (D) pod number in 2013 (black circles) and 2014 (white circles). ***P < 0.001; **P < 0.01; *P < 0.05; +P < 0.1.

Supplementary Table S2. Yield and phenological parameters for the 12 soybean cultivars grown under two levels of planting density in 2013 and 2014. ND, normal plant density (= 9.52 plants per m2) ; LD, low plant density (= 4.76 plants per m2). Data are means (n = 3). Ratio represents the difference between LD and ND for the numbers of days from VE to R1 and from R1 to R7, and the ratio of LD to ND for the other parameters. ***P < 0.001; **P < 0.01; *P < 0.05; +P < 0.1; ns, not significant. Cultivar Plant density Aboveground biomass (g plant-1) Branch number per plant Node number of main stem Harvest index Pod number per plant Pod number per aboveground biomass Seed number per pod Single seed weight(mg) Number of days from VE to R1 Number of days from R1 to R7 2013 2014 Yukihomare ND 45.1 46.5 4.1 3 9 9.3 0.68 0.59 51.5 55.5 1.15 1.20 1.85 1.69 317.9 292.1 31 30 60 58 LD 70.7 48.6 5.1 3.8 9.2 9.7 0.69 81.1 57.9 1.16 1.19 1.87 1.83 318 269.2 57 Ratio 1.57 1.05 1.23 1.27 1.02 1.04 1 1.00 1.01 1.08 0.92 -1 Ohsuzu 93.3 122.4 5.5 6.8 14.4 14 0.62 0.6 104.6 115.5 1.12 0.94 1.68 1.62 329.4 391.8 45 47 63 68 148.9 166.7 6.3 7.9 14.1 15.2 0.61 0.58 166.0 158.3 0.95 1.71 1.58 318.7 382.5 62 1.6 1.36 1.17 0.98 1.09 0.96 1.59 1.37 0.97 Ryuhou 86.8 105.1 6.2 5.7 15 0.53 103.5 100.3 1.65 309.7 339.2 44 41 64 71 133.9 146.7 7 7.3 14.9 14.5 0.55 159.6 137.6 1.67 305.2 346 40 1.54 1.4 1.13 1.28 1.03 0.99 Enrei 88.8 108.8 5.6 6.7 15.5 15.7 0.52 99.9 97.8 0.91 1.66 1.60 321.3 358.9 48 74 147.9 185.3 8.5 16 0.51 165.6 160.9 0.87 1.64 333.1 360.3 1.7 1.3 Miyagishirome 72.4 131.5 18 19.1 0.29 0.46 81.2 101.3 1.11 0.77 0.79 1.77 342.9 337.1 59 54 87 127.7 239.7 8.6 18.8 20.1 154.7 186.5 0.81 1.73 342.2 333.6 72 1.76 1.82 1.39 1.90 1.84 Mandarin 58.4 56.1 3.3 14.8 17.1 74.3 1.33 1.96 1.95 248.6 229.1 28 65 102.6 97.4 4.9 4.2 16.5 17.3 139.5 123.1 2.01 2.02 247.1 235.2 1.74 1.49 1.29 1.72 Dunfield 84.2 83.6 6.6 18.1 18.5 0.56 119.5 106.4 1.42 2.09 2.19 189.2 204.7 38 129.5 122.5 7.6 19.6 193.7 157.1 1.50 179.4 202.7 39 1.47 1.22 1.06 0.83 1.48 Athow 74.1 85.2 4 19.2 21.6 0.57 114.7 2.21 2.34 183.1 190.1 32 80 112 126.5 4.4 5.9 18.7 21.5 0.63 162.8 148.4 1.46 1.21 2.26 2.52 191.4 194.2 29 1.51 1.1 1.07 Harosoy - 110.8 7.4 110.4 2.70 240.8 162.1 7.7 175.3 2.37 221.7 0.88 Harosoy-dt1 62.1 3.6 20.9 0.65 64.8 1.18 2.16 236.4 80.7 0.66 72.7 256.5 0.89 Williams 90.8 88.9 5.3 7.5 22.2 0.54 114.4 93.7 2.30 2.23 206.5 217.6 34 77 81 152 143.3 6.9 10.4 21 22.9 190.8 166.1 1.26 2.28 2.35 205.6 211.8 1.61 1.38 Williams-dt1 48.4 11 56.7 293.2 76 4.6 12.5 75.5 2.48 283.9 1.14 ANOVA Plant density (PD) *** ** ns Cultivar (CV) PDxCV + *

2013; y = 0.276 + 0.817 x R2 = 0.847*** 2013; y = -0.717 + 1.469 x R2 = 0.736** 2014; y = 0.403 + 0.870 x R2 = 0.248+ 2014; y = 0.007 + 0.984 x R2 = 0.916*** 2014; y = -0.1432 + 1.109 x R2 = 0.834*** Supplementary Fig. S3. Linear regressions  between the relative increase in seed yield (low density, LD / normal density, ND) caused by low planting density for (A) branch number, (B) aboveground biomass, and (C) pod number in 2013 (black circles) and 2014 (white circles). ***P < 0.001; +P < 0.1. Data for 2013 only, n = 9.

aIdentified by Ziska et al. (2001). Supplementary Table S3. Descriptions of the 12 soybean cultivars used in this study. aIdentified by Ziska et al. (2001). Cultivar Country Maturity group Determinacy aCharacteristics Yukihomare Japan II Determinate Ohsuzu III Ryuhou IV Enrei Miyagishirome VII Mandarin USA I Indeterminate High CO2 responsive Dunfield Low CO2 responsive Athow Harosoy Harosoy-dt1 Williams Moderate CO2 responsive Williams-dt1

Normal density Low density July 3, 2014 (30 days after sowing) 0.3m 0.15m July 16, 2014 (43 days after sowing) Supplementary Fig. S4. Pictures of plant canopy of two densities at 30 days after sowing and 43 days after sowing of a cultivar ‘Ryuhou’ . These were taken by a camera for measurement of canopy coverage ratio (GACS1, Kimura-Kougei)

Supplementary Table S4. Monthly mean temperature, solar radiation, and precipitation in 2013 and 2014. Air temperature (°C) June July August September October 5-month mean Chamber 2013 22.1 23.4 25.4 21.9 15.3 22.2 2014 24.2 24.4 20.1 14.9 21.1 Field 19.6 21.8 23.5 19.1 13.2 19.4 20.2 22.7 17.1 11.1 18.8 30-year mean 17.8 21.3 22.9 18.2 11.5 18.3 Solar radiation (MJ m-2 d-1) 20.4 12 16.6 12.2 8.3 13.9 18.6 18.4 11.6 15.2 15.1 15 11.8 9.8 13.8 Precipitation (mm) 71.5 261.5 236 95 130 158.8 37.5 503.5 202.5 210 255.5 241.8 108.1 196.4 181.9 155.9 92.5 146.9