Dominant-negative mutant dynein allows spontaneous centrosome assembly, uncouples chromosome and centrosome cycles  István Belecz, Cayetano Gonzalez,

Slides:



Advertisements
Similar presentations
Carly I. Dix, Jordan W. Raff  Current Biology 
Advertisements

Volume 23, Issue 11, Pages (June 2013)
Evidence for an Upper Limit to Mitotic Spindle Length
Centrosome Amplification Can Initiate Tumorigenesis in Flies
Centrosome Duplication
Cell Division: Experiments and Modelling Unite to Resolve the Middle
Caenorhabditis elegans TAC-1 and ZYG-9 Form a Complex that Is Essential for Long Astral and Spindle Microtubules  Martin Srayko, Sophie Quintin, Anne.
Meiosis: Organizing Microtubule Organizers
Spindle Pole Regulation by a Discrete Eg5-Interacting Domain in TPX2
Volume 25, Issue 24, Pages R1156-R1158 (December 2015)
The Spindle Checkpoint Kinase Bub1 and Cyclin E/Cdk2 Both Contribute to the Establishment of Meiotic Metaphase Arrest by Cytostatic Factor  Brian J Tunquist,
Volume 10, Issue 21, Pages (November 2000)
Verena N. Lorenz, Michael P. Schön, Cornelia S. Seitz 
Volume 18, Issue 21, Pages (November 2008)
The Survivin-like C. elegans BIR-1 Protein Acts with the Aurora-like Kinase AIR-2 to Affect Chromosomes and the Spindle Midzone  Elizabeth K. Speliotes,
Sequential Protein Recruitment in C. elegans Centriole Formation
Volume 3, Issue 5, Pages (November 2002)
Volume 18, Issue 4, Pages (February 2008)
Overexpressing Centriole-Replication Proteins In Vivo Induces Centriole Overduplication and De Novo Formation  Nina Peel, Naomi R. Stevens, Renata Basto,
Zhang-Yi Liang, Mark Andrew Hallen, Sharyn Anne Endow  Current Biology 
Spindle Pole Regulation by a Discrete Eg5-Interacting Domain in TPX2
From Stem Cell to Embryo without Centrioles
Naoyuki Fuse, Kanako Hisata, Alisa L. Katzen, Fumio Matsuzaki 
Volume 9, Issue 1, Pages (July 2005)
Volume 11, Issue 13, Pages (July 2001)
Volume 105, Issue 4, Pages (May 2001)
Myosin 2-Induced Mitotic Rounding Enables Columnar Epithelial Cells to Interpret Cortical Spindle Positioning Cues  Soline Chanet, Rishabh Sharan, Zia.
Leah Vardy, Terry L. Orr-Weaver  Developmental Cell 
A Comparative Analysis of Spindle Morphometrics across Metazoans
Volume 12, Issue 3, Pages (March 2007)
Sebastian Leidel, Pierre Gönczy  Developmental Cell 
Volume 25, Issue 7, Pages (March 2015)
Determinants of S. cerevisiae Dynein Localization and Activation
Sister-chromatid cohesion via MEI-S332 and kinetochore assembly are separable functions of the Drosophila centromere  Jacqueline M. Lopez, Gary H. Karpen,
Saeko Takada, Anju Kelkar, William E. Theurkauf  Cell 
Jacopo Scrofani, Teresa Sardon, Sylvain Meunier, Isabelle Vernos 
Volume 6, Issue 4, Pages (April 2004)
S. Chodagam, A. Royou, W. Whitfield, R. Karess, J.W. Raff 
Justin Crest, Kirsten Concha-Moore, William Sullivan  Current Biology 
Centrosome Dysfunction in Drosophila Neural Stem Cells Causes Tumors that Are Not Due to Genome Instability  Elisabeth Castellanos, Paloma Dominguez,
Control of Embryonic Spindle Positioning and Gα Activity by C
Volume 3, Issue 5, Pages (November 2002)
Maria Teresa Zenzes, Ph. D. , Ryszard Bielecki, Robert F Casper, M. D
Peripheral, Non-Centrosome-Associated Microtubules Contribute to Spindle Formation in Centrosome-Containing Cells  U.S. Tulu, N.M. Rusan, P. Wadsworth 
Localized PEM mRNA and Protein Are Involved in Cleavage-Plane Orientation and Unequal Cell Divisions in Ascidians  Takefumi Negishi, Tatsuki Takada, Narudo.
Victoria Stevenson, Andrew Hudson, Lynn Cooley, William E Theurkauf 
Nicole M. Mahoney, Gohta Goshima, Adam D. Douglass, Ronald D. Vale 
Volume 19, Issue 20, Pages (November 2009)
Jessica L. Feldman, James R. Priess  Current Biology 
Volume 24, Issue 13, Pages (July 2014)
Volume 11, Issue 20, Pages (October 2001)
The Ran-GTP Gradient Spatially Regulates XCTK2 in the Spindle
HURP Is Part of a Ran-Dependent Complex Involved in Spindle Formation
Mi Hye Song, L. Aravind, Thomas Müller-Reichert, Kevin F. O'Connell 
Chromosome Segregation: Not to Put Too Fine a Point (Centromere) On It
Volume 17, Issue 17, Pages (September 2007)
Volume 20, Issue 22, Pages (November 2010)
The Origin of Centrosomes in Parthenogenetic Hymenopteran Insects
Dual Detection of Chromosomes and Microtubules by the Chromosomal Passenger Complex Drives Spindle Assembly  Boo Shan Tseng, Lei Tan, Tarun M. Kapoor,
Centriole Reduplication during Prolonged Interphase Requires Procentriole Maturation Governed by Plk1  Jadranka Lončarek, Polla Hergert, Alexey Khodjakov 
Volume 3, Issue 3, Pages (March 1999)
TAC-1, a Regulator of Microtubule Length in the C. elegans Embryo
Julie C Canman, David B Hoffman, E.D Salmon  Current Biology 
The Class I PITP Giotto Is Required for Drosophila Cytokinesis
Volume 5, Issue 1, Pages (October 2013)
Volume 14, Issue 20, Pages (October 2004)
Germline Development and Fertilization Mechanisms in Maize
Volume 18, Issue 18, Pages (September 2008)
CDC-42 controls early cell polarity and spindle orientation in C
Presentation transcript:

Dominant-negative mutant dynein allows spontaneous centrosome assembly, uncouples chromosome and centrosome cycles  István Belecz, Cayetano Gonzalez, Jaakko Puro, János Szabad  Current Biology  Volume 11, Issue 2, Pages 136-140 (January 2001) DOI: 10.1016/S0960-9822(01)00025-2

Figure 1 (a) Rudimentary CS assemble in unfertilized LaborcD eggs and nucleate small MT asters. (b) Normal-looking free CS and MT asters populate the cortexes of the fertilized LaborcD eggs. (c) Both types of CS and asters appear in ∼1% of the fertilized LaborcD eggs. (For wild-type control, see Figure 3d.) (d) There is no indication of centrosome formation in egg primordia as shown by the absence of assembly of the CP190 and CNN molecules. The first meiotic spindle is shown on top left part of the figure. The color codes are as follows: red, CP190 (CNN gives identical staining); green, tubulin; blue, DNA. The scale bar represents 10 μm Current Biology 2001 11, 136-140DOI: (10.1016/S0960-9822(01)00025-2)

Figure 2 EM photographs of centriole cross-sections. (a) Wild-type cleavage embryo. (b) Rudimentary centrioles (arrows) in unfertilized LaborcD eggs. Note the lack of centriole MT. The scale bar represents 100 nm Current Biology 2001 11, 136-140DOI: (10.1016/S0960-9822(01)00025-2)

Figure 3 Initiation of cleavage cycles in fertilized wild-type (a–d) and LaborcD eggs (e–h). In wild type, there is one centrosome at each spindle pole (a). Multiple CS emerge at the poles of the first cleavage spindle in the LaborcD eggs (e). Wild-type (b,c) and LaborcD eggs (f,g) with two and four nuclei are shown. While characteristic spindles appear in wild-type eggs (d), CS detach from the nuclei and populate and nucleate MT asters in the cortexes of the LaborcD eggs. Color codes are as in Figure 1. The scale bar represents 10 μm Current Biology 2001 11, 136-140DOI: (10.1016/S0960-9822(01)00025-2)

Figure 4 Mutations that eliminate the block on chromosome and/or centrosome cycles in unfertilized or in fertilized eggs leading to the formation of polyploid nuclei and/or free CS that nucleate MT asters. (The dashed line represents the formation of rudimentary CS and MT asters.) Current Biology 2001 11, 136-140DOI: (10.1016/S0960-9822(01)00025-2)