G. G. Reinholz, J. S. Fitzsimmons, M. E. Casper, T. J. Ruesink, H. W

Slides:



Advertisements
Similar presentations
Cellular and histopathological changes in the infrapatellar fat pad in the monoiodoacetate model of osteoarthritis pain  K.M. Clements, A.D. Ball, H.B.
Advertisements

Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
An educational review of cartilage repair: precepts & practice – myths & misconceptions – progress & prospects  E.B. Hunziker, K. Lippuner, M.J.B. Keel,
Phlpp1 facilitates post-traumatic osteoarthritis and is induced by inflammation and promoter demethylation in human osteoarthritis  E.W. Bradley, L.R.
Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model  A. Boudenot, N. Presle, R. Uzbekov, H. Toumi, S.
Loss of extracellular matrix from articular cartilage is mediated by the synovium and ligament after anterior cruciate ligament injury  C.M. Haslauer,
Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis  P Pastoureau,
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
T1ρ and T2 relaxation times predict progression of knee osteoarthritis
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells.
A. Hennerbichler, M. D. , F. T. Moutos, M. S. , D. Hennerbichler, M. D
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
K.A. Payne, D.M. Didiano, C.R. Chu  Osteoarthritis and Cartilage 
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Cartilage MRI T2∗ relaxation time and perfusion changes of the knee in a 5/6 nephrectomy rat model of chronic kidney disease  C.-Y. Wang, Y.-J. Peng,
Whole-body vibration of mice induces articular cartilage degeneration with minimal changes in subchondral bone  M.R. McCann, C. Yeung, M.A. Pest, A. Ratneswaran,
Cartilage and bone changes during development of post-traumatic osteoarthritis in selected LGXSM recombinant inbred mice  S. Hashimoto, M.F. Rai, K.L.
A.J. McGregor, B.G. Amsden, S.D. Waldman  Osteoarthritis and Cartilage 
Low magnitude high frequency vibration accelerated cartilage degeneration but improved epiphyseal bone formation in anterior cruciate ligament transect.
The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse  S.S. Glasson, B.V.Sc., T.J. Blanchet, B.S., E.A.
Promotion of the intrinsic damage–repair response in articular cartilage by fibroblastic growth factor-2  F.M.D. Henson, Ph.D., E.A. Bowe, Ph.D., M.E.
Evaluation of autologous chondrocyte transplantation via a collagen membrane in equine articular defects – results at 12 and 18 months  D.D. Frisbie,
X. Zhu, Y. Tang, J. Chen, S. Xiong, S. Zhuo, J. Chen 
K. I. Barton, B. J. Heard, N. M. Solbak, M. Chung, Y. Achari, N. G
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover  R.H. Nielsen, A.-C.
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
Bone marrow stimulation induces greater chondrogenesis in trochlear vs condylar cartilage defects in skeletally mature rabbits  H. Chen, A. Chevrier,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro  E. Tognana, Ph.D., F. Chen, M.D., R.F. Padera,
Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis  P Pastoureau,
Histological changes in the ovine patellar tendon following idealized anterior cruciate ligament reconstruction surgery  K.K. Quan, K.I. Barton, B.J.
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
Is cartilage sGAG content related to early changes in cartilage disease? Implications for interpretation of dGEMRIC  J.J. Stubendorff, E. Lammentausta,
A novel rat model for subchondral microdamage in acute knee injury: a potential mechanism in post-traumatic osteoarthritis  A.J. Ramme, M. Lendhey, J.G.
P.C. Pastoureau, E.B. Hunziker, J.-P. Pelletier 
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
Pretreatment of periosteum with TGF-β1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits 
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Articular cartilage MR imaging and thickness mapping of a loaded knee joint before and after meniscectomy  Y. Song, M.S., J.M. Greve, M.S., D.R. Carter,
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle  Y.-S.
M. Cucchiarini, H. Madry, E.F. Terwilliger 
Stem cell therapy for human cartilage defects: a systematic review
Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells.
N.D. Miljkovic, M.D., Ph.D., G.M. Cooper, Ph.D., K.G. Marra, Ph.D. 
Quantification of differences in bone texture from plain radiographs in knees with and without osteoarthritis  J. Hirvasniemi, J. Thevenot, V. Immonen,
Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulations  L.M. Kock, A. Ravetto, C.C. van Donkelaar, J.
Glucosamine and chondroitin sulfate: biological response modifiers of chondrocytes under simulated conditions of joint stress  L Lippiello  Osteoarthritis.
Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis  B. Doyran, W. Tong,
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
Tissue engineering of cartilage using poly-ɛ-caprolactone nanofiber scaffolds seeded in vivo with periosteal cells  M.E. Casper, J.S. Fitzsimmons, J.J.
M. Hufeland, M. Schünke, A.J. Grodzinsky, J. Imgenberg, B. Kurz 
Who should have a joint replacement? A plea for more ‘phronesis’
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
Osteoarthritis severity is sex dependent in a surgical mouse model
Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage  I. Holloway, M. Kayser, D.A. Lee, D.L. Bader,
Alterations in subchondral bone plate, trabecular bone and articular cartilage properties of rabbit femoral condyles at 4 weeks after anterior cruciate.
Osteoarthritis and Cartilage
C. Pascual Garrido, A. A. Hakimiyan, L. Rappoport, T. R. Oegema, M. A
J.F. Nishimuta, M.E. Levenston  Osteoarthritis and Cartilage 
Cartilage degeneration in different human joints
Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles  J. Malda,
Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression  S.L. Bevill, P.L. Briant, M.E. Levenston,
Presentation transcript:

Rejuvenation of periosteal chondrogenesis using local growth factor injection  G.G. Reinholz, J.S. Fitzsimmons, M.E. Casper, T.J. Ruesink, H.W. Chung, J.C. Schagemann, S.W. O'Driscoll  Osteoarthritis and Cartilage  Volume 17, Issue 6, Pages 723-734 (June 2009) DOI: 10.1016/j.joca.2008.10.011 Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Flow diagram illustrating the distribution of rabbits and periosteal tissue samples used in this study. A total of 367 New Zealand white rabbits (6, 12, and 24+ month-old) received subperiosteal injections of growth factors or vehicle in the medial side of the proximal tibia. After 1, 3, 5, or 7 days, the rabbits were sacrificed and periosteum containing the injection sites (eight samples per rabbit) was harvested together with the underlying bone as an intact osteoperiosteal specimen for histology (to determine cambium cellularity and thickness)13, or periosteal explants were elevated from the bone at the injection sites and cultured for 6 weeks (to determine in vitro cartilage forming capacity)6. Osteoarthritis and Cartilage 2009 17, 723-734DOI: (10.1016/j.joca.2008.10.011) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Schematic drawing of the medial proximal rabbit tibia showing the region bounded by the patellar ligament, growth plate, and medial collateral ligament that is used for harvesting 3.5×3.5mm2 periosteal explants (grid). The four percutaneous injections were targeted in these regions (circles). Osteoarthritis and Cartilage 2009 17, 723-734DOI: (10.1016/j.joca.2008.10.011) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Cambium cellularity (A), maximum cambium thickness (B) and cambium cell density (C) of periosteum from 12 month-old rabbit tibia measured 1, 3, 5, or 7 days post-injection of vehicle, TGF-β1 (20, or 200ng), or TGF-β1 (200ng) plus IGF-1 (2μg). Lowercase letters indicate the results of post-hoc testing using least squares means differences Student’s t-test (P<0.05). Columns with letters in common are not statistically different from one another19. Osteoarthritis and Cartilage 2009 17, 723-734DOI: (10.1016/j.joca.2008.10.011) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Typical (representative of the means) H & E stained histological specimens of periosteum on-bone, from 6 and 12 month-old rabbits 7 days after injection with 200ng TGF-β1 or 200ng TGF-β1 plus 2μg IGF-1. The yellow lines and arrows indicate the cambium. Osteoarthritis and Cartilage 2009 17, 723-734DOI: (10.1016/j.joca.2008.10.011) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Typical (representative of the means) H & E stained histological specimens of periosteum on-bone, from 12 month-old rabbits 1, 3, 5, or 7 days after injection with 200ng TGF-β1 or 200ng TGF-β1 plus 2μg IGF-1. The yellow lines and arrows indicate the cambium. Osteoarthritis and Cartilage 2009 17, 723-734DOI: (10.1016/j.joca.2008.10.011) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Cartilage Yield (A), explant wet weight (B) and total cartilage index (C) of periosteum from 12-month-old rabbit tibia measured 1, 3, 5, or 7 days post-injection of vehicle, TGF-β1 (20, or 200ng), or TGF-β1 (200ng) plus IGF-1 (2μg). Lowercase letters indicate the results of post-hoc testing using least squares means differences Student’s t-test (P<0.05). Columns with letters in common are not statistically different from one another. Osteoarthritis and Cartilage 2009 17, 723-734DOI: (10.1016/j.joca.2008.10.011) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Cartilage Yield (A), explant wet weight (B) and total cartilage index (C) of periosteum from 2 year-old rabbit tibia measured 1, 3, 5, or 7 days post-injection of vehicle, TGF-β1 (200ng), or TGF-β1 (200ng) plus IGF-1 (2μg). Lowercase letters indicate the results of post-hoc testing using least squares means differences Student’s t-test (P<0.05). Columns with letters in common are not statistically different from one another13. Osteoarthritis and Cartilage 2009 17, 723-734DOI: (10.1016/j.joca.2008.10.011) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 8 Correlation between the total cartilage index and cambium cellularity from 12-month-old rabbit periosteum injected with vehicle or TGF-β1 (200ng) and harvested 1, 3, 5, or 7 days post-injection. Osteoarthritis and Cartilage 2009 17, 723-734DOI: (10.1016/j.joca.2008.10.011) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions

Fig. 9 Typical (representative of the means) Safranin O/fast green stained histological specimens of cultured periosteum harvested from 6, 12 and 24 month-old rabbits 7 days after injection of vehicle, TGF-β1 (200ng), or TGF-β1 (200ng) plus IGF-1 (2μg). Osteoarthritis and Cartilage 2009 17, 723-734DOI: (10.1016/j.joca.2008.10.011) Copyright © 2008 Osteoarthritis Research Society International Terms and Conditions