Fibre Lasers for SILIcon testing

Slides:



Advertisements
Similar presentations
Hi Repetition Rate MOPA Based Fibre Laser for Micro Machining Applications Bill O’Neill Centre of Industrial Photonics Institute for Manufacturing University.
Advertisements

Spectral Resolution and Spectrometers
Studying the Physical Properties of the Atmosphere using LIDAR technique Dinh Van Trung and Nguyen Thanh Binh, Nguyen Dai Hung, Dao Duy Thang, Bui Van.
SFB Investigation of pulsed spin polarized electron beams at the S-DALINAC PSTP 2013 PSTP Martin Espig – M. ESPIG, J. ENDERS, Y.
AREAL Laser overview Advanced Research Electron Accelerator Laboratory Aghasi Lorsabyan.
Spectral Resolution and Spectrometers A Brief Guide to Understanding and Obtaining the Proper Resolution of the 785 Raman System.
Light what is it?. Light what is it? moving energy wave or particle?
LEReC Laser Controls & RF Requirements Brian Sheehy 10/31/13 Laser timing Laser design RF and Control Needs.
EE 403 (or 503) Introduction to plasma Processing Fall 2011 Title of the project Your name.
Pump Probe Measurements of Femto-second Pulses By David Baxter.
Interference & Diffraction
Designing High Power Single Frequency Fiber Lasers Dmitriy Churin Course OPTI
MB1 T.O.F. II Precise timing Electron ID Eliminate muons that decay Tracking devices T.O.F. 0 & I Pion /muon ID precise timing 201 MHz RF cavities Liquid.
David Johnson –APC -.  The Proton Improvement Plan is tasked with Booster upgrades which will increase the Booster throughput required for future operation.
NA62 Gigatracker Working Group Meeting 2 February 2010 Massimiliano Fiorini CERN.
The ILC Laser-wire system Sudhir Dixit The John Adams Institute University of Oxford.
DMP Product Portfolio Femtosecond Lasers Trestles Ti:Sapphire lasers …… fs; nm, mW Mavericks Cr:Forsterite lasers
Fiber-Optic Accelerometer Using Wavefront-Splitting Interferometry Hsien-Chi Yeh & Shulian Zhang July 14, 2006.
What’s already existing?What’s already existing? Laser system & impacts on Optics TransportLaser system & impacts on Optics Transport –Laser power –Focusing.
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
Experimental set-up Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE Multi-Channel MCP PMTs S.Korpar a,b, R.Dolenec.
Fiber Laser for ERL Zach Ulibarri Mentor: Zhi Zhao.
M. Zamfirescu, M. Ulmeanu, F. Jipa, O. Cretu, A. Moldovan, G. Epurescu, M. Dinescu, R. Dabu National Institute for Laser Plasma and Radiation Physics,
1 ALICE T0 detector W.H.Trzaska (on behalf of T0 Group) LHCC Comprehensive Review, March 2003.
Folienvorlagen für Seminarvortrag. Novel laser concepts HR-mirror out coupling mirror disc cooling diode laser focusing optic diode laser focusing optic.
Light Calibration System (LCS) Temperature & Voltage Dependence Option 2: Optical system Option 2: LED driver Calibration of the Hadronic Calorimeter Prototype.
Tunable, resonant heterodyne interferometer for neutral hydrogen measurements in tokamak plasmas * J.J. Moschella, R.C. Hazelton, M.D. Keitz, and C.C.
Experimental set-up for on the bench tests Abstract Modeling of processes in the MCP PMT Timing and Cross-Talk Properties of BURLE/Photonis Multi-Channel.
Possible calibration methods for the final LXe calorimeter A. Papa 01/20/2004.
V. Sonnenschein, I. D. Moore, M. Reponen, S. Rothe, K.Wendt.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Oscillator stability & ASE Reduction
Laser system for ILC diagnostics Sudhir Dixit: The John Adams Institute (Oxford)
Laser drilling of a Copper Mesh
TIMING COUNTER: status report Giorgio CECCHET, PSI July 11th, 2003.
Introduction to Nanoscan
Erbium Microchip Laser Development 1.Erbium:Yb:Glass and Er:Yb:LiNbO3 Status. 2.Problems with 980 nm Laser Pump. 3.Development Plans.
Numerical and experimental study of the mode tuning technique effects. Application to the cavity ring-down spectroscopy. J. Remy, G.M.W. Kroesen, W.W.
Workshop for advanced THz and Compton X-ray generation
1 Progress of the Thomson Scattering Experiment on HSX K. Zhai, F.S.B. Anderson, D.T. Anderson HSX Plasma Laboratory, UW-Madison Bill Mason PSL, UW-Madison,
Space-time analogy True for all pulse/beam shapes
Laser Safety, ANP 5 nov Working with lasers.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
1 Junji Urakawa (KEK, Japan) at PosiPol2012, Under development of Quantum Beam Technology Program(QBTP) supported by MEXT from to
TCT measurements with irradiated strip detectors Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko Milovanović 1, Marko Mikuž.
Picking the laser ion and matrix for lasing
DECam Spectrophotometric Calibration DECam calibration workshop, TAMU April 20 th, 2009 Jean-Philippe Rheault, Texas A&M University.
Many-Body Effects in a Frozen Rydberg Gas Feng zhigang
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Status of the SPARC laser and “dazzler” experiments
Light What is it?.
SPARCLAB: PW-class Ti:Sa laser+SPARC
Emittance measurements for LI2FE electron beams
Practical advices for using TCT (mostly for Particulars setups)
Summary of SPARC first-phase operations
R&D description Schedule
Single and dual wavelength Er:Yb double clad fiber lasers
8-10 June Institut Henri Poincaré, Paris, France
E- source R&D update ILC source laser project Faraday rotation experiment A. Brachmann 05/07/07 SLAC R&D meeting.
Position Sensitive TCT Measurements with 3D-stc detectors
Fast scanning systems for Laser-wires
Lasers for the polarimeter
Bill Brocklesby Optoelectronics Research Centre
Laserwire: high resolution non-invasive beam profiling
DESIGN AND FIRST EXPERIENCE WITH THE FERMI SEED LASER
Example: 633 nm laser light is passed through a narrow slit and a diffraction pattern is observed on a screen 6.0 m away. The distance on the screen.
LCLS Commissioning Parameters
Scalar theory of diffraction
LCLS Injector Laser System Paul R. Bolton, SLAC April 24, 2002
Status Report on MCP PET Simulation
Presentation transcript:

Fibre Lasers for SILIcon testing

The Glaser laser The most common in HEP. Versions in 1060, 980, 660 nm Rise Time <0,5 ns Fall Time <0,5 ns Optical power: <2 mW – 660 nm <1.5 mW 980 nm < 2mW 1060 Focuser: fiber pigtailed focuser with working distance of 12mm. Magnification of one. Example of model: WL of source 1060 nm Working distance : 12 mm Slit Width = 5 micron Correction Factor at 5/20.4 = 0.25 is 0.95 Actual spot diameter : X: 20.7X0.95=19.7 micron Y:20.4X0.95=19.4 micron

standard setup Cost: ~ 30 k€ Particulars – Ljubliana Complete TCT setup. Laser diode wavelength: 660 nm, 1064 nm (optional others) Pulse: 20 to 2000 k electrons pulse width: <350 ps - 4000 ps (tunable) running : pulse: 50 Hz - 1MHz , pattern mode: mHz to 100 kHZ Optics beam spot (FWHM) : <11 microns@1064 nm, <8 microns@660 nm Coupling: fibre coupled size: <12 microns@1064 nm, <8 microns@650 nm moving range: 5 cm x 5 cm x 5cm (x,y,z) resolution: < 1 micron mounting plane: 5 cm x 5 cm Cost: ~ 30 k€

Particulars – Ljubliana Large setup Complete TCT setup. Laser diode wavelength: 660 nm, 1064 nm (optional others) Pulse: 20 to 2000 k electrons pulse width: <350 ps - 4000 ps (tunable) running : pulse: 50 Hz - 1MHz , pattern mode: mHz to 100 kHZ Optics beam spot (FWHM) : <11 microns@1064 nm, <8 microns@660 nm Coupling: fibre coupled size: <12 microns@1064 nm, <8 microns@650 nm moving range: 5 cm x 5 cm x 5cm (x,y,z) resolution: < 1 micron mounting plane: 5 cm x 5 cm

Educational Compact setup Particulars – Ljubliana Complete TCT setup. Laser diode wavelength: 660 nm, 1064 nm (optional others) Pulse: 20 to 2000 k electrons pulse width: <350 ps - 4000 ps (tunable) running : pulse: 50 Hz - 1MHz , pattern mode: mHz to 100 kHZ Optics beam waist ~1 mm Coupling: fibre coupled moving range: 5 cm x 5 cm resolution: < 1 micron mounting plane: 5 cm x 5 cm

Lasers available at Particulars Wavelength ID of the laser 1064 nm,fibre coupled laser FC LA-01 IR FC 980 nm, fibre coupled laser FC LA-01 NIR FC 660 nm, fibre coupled laser FC LA-01 R FC 520 nm, fibre coupled laser FC LA-01 G FC 405 nm, fibre coupled laser FC LA-01 B FC 1310 nm, bare/open diode LA-01 FIR B 1064 nm, bare/open diode LA-01 IR B 935 nm, bare/open diode LA-01 NIR B 640 nm, bare/open diode LA-01 R B 520 nm, bare/open diode LA-01 G B 405 nm, bare/open diode LA-01 B B

Going FEMTO For single photon TCT, pulse energies of about 0.01 pJ are enough 1 pJ ~ 6 Mphotons For Two photon TCT one needs a photon density of 1 per million cubic micron in 100 fs  about 0.2 pJ per pulse @ 1300 nm This requires HNA lenses to focus in small volumes. HNA implies small working distances.

Pulsed femtosecond laser systems TOPTICA 780 nm, 80 MHz < 1 pJ per pulse, 90 fs MENLO 1560/780 nm, 100 MHz < 1 pJ per pulse, 150 fs MENLO 1560/780 nm, 100 MHz < 1 nJ per pulse, 150 fs