Figure 1 ROC curve of ASFMR1-TV2

Slides:



Advertisements
Similar presentations
Figure Pedigrees of the SCA42 families identified in this study
Advertisements

Figure 2 ERG amplitude reduction in the follow-up study
Figure 2 Sanger sequencing, conservation, and summary of known ACO2 mutations Sanger sequencing, conservation, and summary of known ACO2 mutations (A)
Figure 1 Summary of prior diagnostic workup in neuromuscular disorder cases Summary of prior diagnostic workup in neuromuscular disorder cases Percentage.
Figure Genomic and facial overview of the microduplications overlapping the GRIN2D gene found in the retrieved patients Genomic and facial overview of.
Figure 3 Pedigree of familial idiopathic transverse myelitis
Figure 1 Box plot of the venous diameter in lesions
Figure 2 Needle biopsy of the left vastus lateralis
Figure 1 Stiff-person syndrome spectrum patient serum bound to membranes of live GlyRα1-transfected HEK293 cells Stiff-person syndrome spectrum patient.
Figure 2 Spinal cord lesions
Figure 1 Hierarchical clustering (HCL) outcome of all tested samples with the expression profile of the case report set as unknown Hierarchical clustering.
Figure 1 Spine MRI, sagittal and axial views of patients with idiopathic transverse myelitis with VPS37A mutations Spine MRI, sagittal and axial views.
Figure 1 Comparison of miR-150-5p (log scale), prednisone dose (mg), and QMG score between the thymectomy (ETTX) and prednisone groups Comparison of miR-150-5p.
Figure 2 FXTAS Rating Scale scores for case 1
Figure Pedigree of the family
Figure 2 Luciferase assays of transiently transfected HEK 293 cells with reporter constructs containing the 766-bp wild-type KCNJ18 or c.-542 T/A mutant.
Figure 2 Correlation between total IgG levels and anti-AQP4 IgG titer
Figure Association of hippocampal subfield volumes to cognition by neopterin level, volumes, and cognition adjusted for age, education, race, sex, and.
Figure 1 Dominant and recessive missense and nonsense variants in neurofilament light (NEFL)‏ Dominant and recessive missense and nonsense variants in.
Figure 3 Temporal trends in FALS incidence
Table 4 Associations in SNP array data between the Braak stage and previously known AD risk loci (341 variants) comparing participants with Braak stage.
Figure 1 All patients with pediatric genetic movement disorders, their genetic diagnoses, and type of genetic investigations All patients with pediatric.
Figure 5 Neurite structure is not disrupted by the lack of neurofilament light (NEFL)‏ Neurite structure is not disrupted by the lack of neurofilament.
Figure 3 Transport activity of human SLC25A4 and SLC25A4 p.Lys33Gln
Figure 3 Receiver operating characteristics for CSF glucose (n = 225) and serum/CSF glucose ratio (n = 156) as predictors for microbial meningitis Receiver.
Figure 1 Characteristics of the German National MS Cohort
Figure 2 Linkage analysis of chromosome 19
Figure 1 White matter lesion central vein visibility in MS and absence in small vessel disease (SVD)‏ White matter lesion central vein visibility in MS.
Figure 3 Mutation carrier–derived lymphoblastoid cell lines (LCLs) show decreased aconitase 2 activity and mitochondrial respiration deficiency compared.
Figure 3 sVEGF concentrations in anemia and hypoxemic diseases
Figure Family tree with the HLA haplotyping of 6 members of the family
Figure 4 Relative abundances of the order Clostridiales and its family members are differentially changed by therapy Relative abundances of the order Clostridiales.
Figure 1 Family pedigree and MRI
Figure 3 Analysis of the prognostic value of IL-10–producing B cells or IL-6/IL-10–B-cell ratio measurements in patients with RIS/CIS MS Analysis of the.
Figure Comparison between minutes of MVPA/day and nDGv in patients with MS (green) or monoADS (blue)‏ Comparison between minutes of MVPA/day and nDGv in.
Figure Genomic and facial overview of the microduplications overlapping the GRIN2D gene found in the retrieved patients Genomic and facial overview of.
Figure 2 Functionally significant genes
Table 2 Rs number, gene, OR, 95% CI, and permutation p value for the statistical significant variants resulted from allelic association analysis association.
Figure 1 Family pedigree and DNA sequencing results
Figure 4 Voltage-clamp recordings of KCNJ18 carrying the patient's SNVs expressed in Xenopus laevis oocytes under control conditions and after application.
Figure Diagrammatic levodopa pharmacokinetics after single doses of immediate release (IR) carbidopa/levodopa (CD/LD) and 3 strengths of extended release.
Figure 1 [18F]florbetapir standardized uptake value ratio analytical method [18F]florbetapir standardized uptake value ratio analytical method Flowchart.
Figure 1 Phenotype and functional properties of B cells in MS and HCs at baseline Phenotype and functional properties of B cells in MS and HCs at baseline.
Figure 1 Responder rates of patients at 4 weeks compared with prevaccinated levels Responder rates of patients at 4 weeks compared with prevaccinated levels.
Figure 6 Cellular composition after tissue dissociation
Figure 1 Histamine flare in patients and controls
Figure 2 Interactome analyses in bvFTD
Figure 2 Changes in fatigue under treatment
Figure 2 Longitudinal relationship between CSF glucose and protein changes Longitudinal relationship between CSF glucose and protein changes Delta glucose.
Figure 2 Global tau-PET distribution in familial prion disease mirrors the distribution seen in Alzheimer disease Global tau-PET distribution in familial.
Figure 1 Annualized percentage brain volume change
Figure 2 BVL according to on-study disability worsening
Figure 2 Repopulation of CD19+ cells in low and high BSA patients and calculation of the BSA Repopulation of CD19+ cells in low and high BSA patients and.
Figure 4 CHCHD2 but not TOP1MT expression rescues molecular defects
Figure 1 bvFTD PINBPA network
Figure 1 Schematic representation of FOXG1 gene, protein domain structure, and positions of FOXG1 mutations Schematic representation of FOXG1 gene, protein.
Figure 2 Seizure outcomes
Yian Gu et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e521
Ingo Kleiter et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e504
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure 2 Pedigrees of families and segregation analysis of variants c
Figure 2 LMNB1 mRNA expression
Figure 1 ASO functions ASO functions Target mRNA fates depending on ASO mechanism of action that is determined by where the ASO is targeted and by ASO.
Figure 3 Within-group comparisons (before–after)‏
Figure 2 Between-group comparisons
Figure 1 Segmentation of the normal-appearing periependymal white matter Segmentation of the normal-appearing periependymal white matter The figure demonstrates.
Figure 2 Time from incident ADS event to MS diagnosis
Figure 4 Venn diagram for B-cell Sup proteins compared with proteins from exosome-enriched fractions from a human B-cell line Venn diagram for B-cell Sup.
Figure 3 A receiver operating characteristic curve of days to IVMP as a predictor of failure to regain 0.2 logMAR (20/30) vision (AUC 0.84, p < 0.001)‏
Figure (A and B) Effect of canakinumab in muscle strength measured in each patient as mean bilateral GF (A) and TMS (B) during the mean study period of.
Presentation transcript:

Figure 1 ROC curve of ASFMR1-TV2 ROC curve of ASFMR1-TV2 (A and B) ROC analysis indicated that ASFMR1-TV2 has a good discriminating power of FXTAS when comparing FXTAS with PMC and normal in men (A: AUC = 0.80; 95% CI = 0.68, 0.92) and women (B: AUC = 0.80; 95% CI = 0.67, 0.9). (C and D) ROC analysis indicated that ASFMR1-TV2 did not have a good discriminating power when comparing FXTAS with PMC in both men (C) and women (D) (men: AUC = 0.53, 95% CI = 0.32, 0.74; women: AUC = 0.69, 95% CI = 0.53, 0.85). (E and F) ROC analysis indicated that ASFMR1-TV2 has a good discriminating power when comparing PMC without FXTAS with normal in both men (E) and women (F) (men: AUC = 0.95, 95% CI = 0.86, 1; women: AUC = 0.92, 95% CI = 0.85, 0.99). (A–F) The green line is the diagonal reference line, and the blue line is the empirical ROC curve comparing FXTAS with NCs and premutation carriers (A and B), FXTAS with PMC (C and D), and PMC without FXTAS with controls (E and F) (The closer the ROC curve gets to the reference line, the worse the test. A large value of the AUC indicates a good test. An area of 1 means a perfect test, and 0.5 represents a worthless test). AUC = area under the curve; ASFMR1-TV2 = antisense fragile-X mental retardation-transcript variant 2; CI = confidence interval; FXTAS = fragile X-associated tremor/ataxia syndrome; NC = normal control; PMC = premutation carrier; ROC = receiver operating characteristic. Padmaja Vittal et al. Neurol Genet 2018;4:e246 Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.