Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o

Slides:



Advertisements
Similar presentations
Degrees Minutes & Seconds 360 ° in a circle 1° = 1/360 of a circle 1’ = 1/60 of one degree 1” = 1/60 of one minute 1° = 60 minutes or 3600 seconds.
Advertisements

Dividing a Decimal by a Decimal. Dividing Whole Numbers 12 ÷ 2 = 120 ÷ 20 = 1200 ÷ 200 = ÷ 2000 = Multiply both 12 and 2 by 10 Multiply.
4.1 Radian and Degree Measure (part 2) V. Evaluating degrees° minutes’ seconds” (D°M’S”) A) The distance between two degrees (ex: 15°& 16°) can be 1) divided.
Section 7.1 Angles and Their Measure Copyright © 2013 Pearson Education, Inc. All rights reserved.
Radian and Degree Measure (part 2)
Degrees and Radians Pre-Calculus Keeper 11.
Angles and Their Measure
Angular Velocity Linear Velocity.
Angles and Their Measure
Examples Radians & Degrees (part 2)
Radians & Arc Lengths Section 5.2.
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
Section 4.1: Angles and Their Measures
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Angles and Their Measures
Find: the soil classification
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: ρc [in] from load after 2 years
47.75⁰ Convert to radians: 230⁰.
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
γdry=110 Find: VTotal[ft3] of borrowed soil Fill VT=10,000 [ft3]
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: Mmax [lb*ft] in AB
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: the soil classification
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Bearing Capacity, qult [lb/ft2]
Find: Daily Pumping Cost [$]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C
Find: % of sand in soil sieve # mass retained [g] 60% 70% 80% D) 90% 4
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: Vwater[gal] you need to add
Find: hL [m] rectangular d channel b b=3 [m]
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Find: STAC B C O A IAB R STAA= IAB=60
6.1 Angles and Their Measure
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Find: AreaABCD [ft2] C 27,800 30,500 B 33,200 36,000 N A D set up
Angles and Their Measure
Angles and Their Measure
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Angles and Their Measure
Write the expression in simplest form.
Presentation transcript:

Find: αNAB N STAB=7+82 B STAA=5+47 3.9 5.1 6.4 7.8 D=3 20’ 00” A O o o Find the deflection angle N A B. [pause] In this problem, points A and B ---- A O

Find: αNAB N STAB=7+82 B STAA=5+47 3.9 5.1 6.4 7.8 D=3 20’ 00” A O o o are positioned at the beginning, and end of a horizontal curve. The stationing ---- A O

Find: αNAB N STAB=7+82 B STAA=5+47 3.9 5.1 6.4 7.8 D=3 20’ 00” A O o o for these two points is given, as well as the degree of curvature --- A O

Find: αNAB N STAB=7+82 B STAA=5+47 3.9 5.1 6.4 7.8 D=3 20’ 00” A O o o for the horizontal curve. [pause] The problem asks to find the deflection angle ---- A O

Find: αNAB N STAB=7+82 B STAA=5+47 3.9 5.1 6.4 7.8 D=3 20’ 00” A O o o N A B, which is the angle a station set on A would have to turn if facing N, to face Point B. If we define the --- A O

Find: αNAB N STAB=7+82 B STAA=5+47 3.9 5.1 6.4 7.8 D=3 20’ 00” I A O o interior angle of the curve, as Angle I, then we know our deflection angle equals ---- A O

Find: αNAB αNAB= αNAB N I 2 B I A O STAB=7+82 STAA=5+47 D=3 20’ 00” o One half of angle I. [pause] Angle I equals --- A O STAB=7+82 STAA=5+47 o D=3 20’ 00”

Find: αNAB αNAB= αNAB N I LAB I= 2 R B I A O STAB=7+82 STAA=5+47 the length of the curve, from point A to point B, --- A O STAB=7+82 STAA=5+47 o D=3 20’ 00”

Find: αNAB αNAB= αNAB curve length N I LAB I= 2 R radius B I A O divided by the radius of the curve, R. [pause] The length of the curve is computed by ---- A O STAB=7+82 STAA=5+47 o D=3 20’ 00”

Find: αNAB αNAB= αNAB curve length N I LAB I= 2 R radius B LAB=STAB-STAA I subtracting the stationing of Point B from the stationing of Point A. A O STAB=7+82 STAA=5+47 o D=3 20’ 00”

Find: αNAB αNAB= αNAB curve length N I LAB I= 2 R radius B LAB=STAB-STAA I 782 feet minus 547 feet equals 235 --- A O STAB=7+82 STAA=5+47 o D=3 20’ 00”

Find: αNAB αNAB= αNAB curve length N I LAB I= 2 R radius B LAB=STAB-STAA LAB=235 [ft] I feet. [pause] The radius of the curve --- A O STAB=7+82 STAA=5+47 o D=3 20’ 00”

Find: αNAB αNAB= αNAB curve length N I LAB I= 2 R radius B LAB=STAB-STAA LAB=235 [ft] I can be determined using the the degree of curvature value, ---- A O STAB=7+82 STAA=5+47 o D=3 20’ 00”

Find: αNAB αNAB= αNAB curve length N I LAB I= 2 R radius B LAB=STAB-STAA LAB=235 [ft] I D. The radius of the curve, in feet, equals ---- A O STAB=7+82 STAA=5+47 o D=3 20’ 00”

Find: αNAB αNAB= αNAB LAB=235 [ft] N I LAB I= 2 R radius B o R= D in DD form I 5,729.6, degrees feet, divided by the degree of curvature, in decimal degree form. Converting the degree of curvature ---- A O STAB=7+82 STAA=5+47 o D=3 20’ 00”

Find: αNAB αNAB= αNAB LAB=235 [ft] N I LAB I= 2 R radius B o R= D in DD form I from degrees minutes seconds form to decimal degrees from involves adding the degrees --- A O o D=3 20’ 00” DMS form

Find: αNAB αNAB= αNAB + LAB=235 [ft] N I LAB I= 2 R radius B o R= D in DD form I to, the minutes divided by 60, and, to the seconds divided by 60 squared. This makes the degree of curvature ---- A O o D=3 20’ 00” DMS form 20 00 D=3+ + 60 602

Find: αNAB αNAB= αNAB + LAB=235 [ft] N I LAB I= 2 R radius B o R= D in DD form I equal to 3.333 degrees. [pause] Plugging in this value --- A O o D=3 20’ 00” DMS form o D=3.333 20 00 D=3+ + DD form 60 602

Find: αNAB αNAB= αNAB + LAB=235 [ft] N I LAB I= 2 R radius B o R= D in DD form I for the degree of curvature, the radius of the curve computes to --- A O o D=3 20’ 00” DMS form o D=3.333 20 00 D=3+ + DD form 60 602

Find: αNAB αNAB= αNAB + LAB=235 [ft] N I LAB I= 2 R radius B o R= D in DD form I 1,719 feet. [pause] Plugging this value in ---- A O o D=3 20’ 00” DMS form o D=3.333 20 00 D=3+ + DD form 60 602

Find: αNAB αNAB= αNAB + LAB=235 [ft] N I LAB I= 2 R radius B o R= D in DD form I for the radius, the internal angle, I, equals --- A O o D=3 20’ 00” DMS form o D=3.333 20 00 D=3+ + DD form 60 602

Find: αNAB αNAB= αNAB + 0.1367 [rad] LAB=235 [ft] N I LAB I= 2 R radius B 1,719 [ft] αNAB 5,729.6 [ *ft] o R= D in DD form I 0.1367 radians. [pause] Plugging this value in --- A O o D=3 20’ 00” DMS form o D=3.333 20 00 D=3+ + DD form 60 602

Find: αNAB αNAB= αNAB + 0.1367 [rad] LAB=235 [ft] N I LAB I= 2 R B o R= D in DD form I for the internal angle, the deflection angle N A B equals, --- A O o D=3 20’ 00” DMS form o D=3.333 20 00 D=3+ + DD form 60 602

Find: αNAB αNAB= αNAB + 0.1367 [rad] LAB=235 [ft] N I LAB I= 2 R B o R= D in DD form I 0.06835 radians. [pause] To convert radians to decimal degrees, --- A O o D=3 20’ 00” DMS form o D=3.333 20 00 D=3+ + DD form 60 602

Find: αNAB αNAB= αNAB π + 0.1367 [rad] LAB=235 [ft] N I LAB I= 2 R B o R= 180 D * π in DD form I we’ll multiply by 180 degrees per radian, and deflection angle N A B equals, --- A O o D=3 20’ 00” DMS form o D=3.333 20 00 D=3+ + DD form 60 602

Find: αNAB αNAB= αNAB π αNAB=3.917 + 0.1367 [rad] LAB=235 [ft] N I LAB o R= 180 D * π in DD αNAB=3.917 o form 3.917 degrees. [pause] A O o D=3 20’ 00” DMS form o D=3.333 20 00 D=3+ + DD form 60 602

Find: αNAB αNAB= αNAB π αNAB=3.917 + 0.1367 [rad] LAB=235 [ft] N I LAB o R= 180 D * π αNAB=3.917 o o 3.9 5.1 6.4 7.8 When reviewing the possible solutions, --- o A o D=3 20’ 00” DMS o o 20 00 D=3+ + 60 602

Find: αNAB αNAB= αNAB π αNAB=3.917 + 0.1367 [rad] LAB=235 [ft] N I LAB o R= 180 D * π αNAB=3.917 o o 3.9 5.1 6.4 7.8 the answer is A. answerA o A o D=3 20’ 00” DMS o o 20 00 D=3+ + 60 602

0.06835 radians.

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4