Smart Reply: Automated Response Suggestion for

Slides:



Advertisements
Similar presentations
Collaborative Filtering in Social Tagging System on Joint Item-Tag Recommendations Date : 2011/11/7 Source : Jing Peng et. al (CIKM’10) Speaker : Chiu.
Advertisements

Diversity Maximization Under Matroid Constraints Date : 2013/11/06 Source : KDD’13 Authors : Zeinab Abbassi, Vahab S. Mirrokni, Mayur Thakur Advisor :
Entity-Centric Topic-Oriented Opinion Summarization in Twitter Date : 2013/09/03 Author : Xinfan Meng, Furu Wei, Xiaohua, Liu, Ming Zhou, Sujian Li and.
A Semantic Clustering-based Approach For Searching And Browsing Tag Spaces Date: 2011/10/17 Source:Damir Vandic et. al (SAC’11) Speaker:Chiang,guang-ting.
1 Mining Relationships Among Interval-based Events for Classification Dhaval Patel 、 Wynne Hsu Mong 、 Li Lee SIGMOD 08.
1 生物計算期末作業 暨南大學資訊工程系 2003/05/13. 2 compare f1 f2  只比較兩個檔案 f1 與 f2 ,比完後將結果輸出。 compare directory  以兩兩比對的方式,比對一個目錄下所有檔案的相 似程度。  將相似度很高的檔案做成報表輸出,報表中至少要.
Divide-and-Conquer. 什麼是 divide-and-conquer ? Divide 就是把問題分割 Conquer 則是把答案結合起來.
Mathcad 基本認識 再mathcad中等於(=)的符號有區分為三種: 第一種:冒號等於(:=)是代表我們要定義ㄧ個參數
: A-Sequence 星級 : ★★☆☆☆ 題組: Online-judge.uva.es PROBLEM SET Volume CIX 題號: Problem D : A-Sequence 解題者:薛祖淵 解題日期: 2006 年 2 月 21 日 題意:一開始先輸入一個.
3Com Switch 4500 切VLAN教學.
Reference, primitive, call by XXX 必也正名乎 誌謝 : 部份文字取於前輩 TAHO 的文章.
T-SQL 運算子介紹 11/29. 運算子的總類 指定運算子 算術運算子 比較運算子 邏輯運算子 位元運算子 字串連結運算子 單一運算元運算子.
Word 進階 Speaker : Kuo Tung Yang Date: 2008/12/10.
CH-23 失效原因樹分析 FTA Failure Tree Analysis. 前言 為了提昇系統可靠度,產品在開發階段,利 用類似品管方法之魚骨圖分析手法,找出潛在 缺點,並加以改進,此種分析方法稱之為失效 原因樹分析法 (Failure Tree Analysis)– FTA 。 FTA 是一種系統化的方法,可以有效的找出.
1 Chapter 4 如何建立自己的元件庫 由現有的電路圖建一符號元件 如何將建立的符號元件在別的專案中使 用 先建立符號元件再設計內部電路 壹位元全加法器之設計 二位元全加法器之設計.
: Road Construction ★★★☆☆ 題組: Contest Archive with Online Judge 題號: 10724: Road Construction 解題者:徐文宏 解題日期: 2011 年 4 月 20 日 題意:給一個座標圖 (-1000~1000)
Graph V(G 1 )={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} E(G 1 )={(0, 2), (0, 3), (1, 4), (2, 3), (2, 5), (2, 6), (3, 6), (3, 7), (4, 7), (5, 6), (5,
: Matrix Decompressing ★★★★☆ 題組: Contest Volumes with Online Judge 題號: 11082: Matrix Decompressing 解題者:蔡權昱、劉洙愷 解題日期: 2008 年 4 月 18 日 題意:假設有一矩陣 R*C,
JAVA 程式設計與資料結構 第十四章 Linked List. Introduction Linked List 的結構就是將物件排成一列, 有點像是 Array ,但是我們卻無法直接經 由 index 得到其中的物件 在 Linked List 中,每一個點我們稱之為 node ,第一個 node.
8.1 何謂高度平衡二元搜尋樹 8.2 高度平衡二元搜尋樹的加入 8.3 高度平衡二元搜尋樹的刪除
Department of Air-conditioning and Refrigeration Engineering/ National Taipei University of Technology 模糊控制設計使用 MATLAB 李達生.
Intelligent Systems Mu-Chun Su Department of Computer Science & Information Engineering National Central University.
南投縣社區大學 Excel 實務應用入門 講師 : 林泉成
ACM DIGITAL LIBRARY Presentation by 鄒怡嬋 Effie Zou
: Walking on a Grid ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10913: Walking on a Grid 解題者:陳盈村 解題日期: 2008 年 5 月 2 日 題意:給定一個 N*N 矩陣,題目要求依照.
Network Connections ★★★☆☆ 題組: Contest Archive with Online Judge 題號: Network Connections 解題者:蔡宗翰 解題日期: 2008 年 10 月 20 日 題意:給你電腦之間互相連線的狀況後,題.
24-6 設定開始與結束場景中的 程式 最後我們要替這個遊戲收個尾, 幫它把開始 的等待畫面跟結束畫面處理一下。
最新計算機概論 第 5 章 系統程式. 5-1 系統程式的類型 作業系統 (OS) : 介於電腦硬體與 應用軟體之間的 程式,除了提供 執行應用軟體的 環境,還負責分 配系統資源。
1 Netlibrary 電子書 Netlibrary 創始於 1998 年,是世界知名的電子書資 料庫,提供 450 多家出版社所出版近 100,962 ( 止)本的電子書,且以每月 2,000 本的 速度增加中。其中 80% 屬於學術性圖書,其餘 20% 一般圖書, 90% 以上為.
各種線上電子資源的特異功能 SwetsWise 的 alert, TOC alert 與 Favorites 2003/4/28 修改.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 參 資料蒐集的方法.
: Count DePrimes ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11408: Count DePrimes 解題者:李育賢 解題日期: 2008 年 9 月 2 日 題意: 題目會給你二個數字 a,b( 2 ≦ a ≦ 5,000,000,a.
結構學(一) 第七次作業 97/05/15.
1 Introduction to Java Programming Lecture 2: Basics of Java Programming Spring 2008.
: Problem G e-Coins ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10306: Problem G e-Coins 解題者:陳瀅文 解題日期: 2006 年 5 月 2 日 題意:給定一個正整數 S (0
函式 Function Part.2 東海大學物理系‧資訊教育 施奇廷. 遞迴( Recursion ) 函式可以「呼叫自己」,這種動作稱為 「遞迴」 此程式的執行結果相當於陷入無窮迴圈, 無法停止(只能按 Ctrl-C ) 這給我們一個暗示:函式的遞迴呼叫可以 達到部分迴圈的效果.
資料結構實習-二.
開工前的禱告.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 10 m-way 搜尋樹與B-Tree
網路介紹及其運用 講師陳炯勳. 5-2 IP 協定 ( 一 ) IP 協定運作 (1) – 網路成員:主機 (Host) 與路由器 (Router) – 路由表 – 電報傳輸運作.
From: BOOKS ONLINE 1 Safari Tech Books Online 資訊科技電子書資料庫 提供您最新、最權威 -- 資訊科技新 知.
1 Introduction to Java Programming Lecture 2: Basics of Java Programming Spring 2009.
Biological Science Database 個人化服務設定步驟. Biological Science Database 僅提供專題選 粹服務 專題選粹 (Alerts) :查詢後,提供儲存檢 索策略的功能,日後每週將符合條件的 更新資料,採 方式通知。每筆設定 最多每週可收到.
海洋大學力學聲響振動實驗室 1 ECCENTRIC PROBLEM OF LAPLACE EQUATION VIA BEM AND BIEM FINAL REPORT OF BOUNDARY ELEMENT METHOD Z. H. Kao.
:Stupid Sequence ★★★☆☆ 題組: Contest Archive with Online Judge 題號: 11319: Stupid Sequence 解題者:李育賢 解題日期: 2008 年 11 月 23 日 題意: 一個公式 f(x)=a 0 +a 1 x+a.
Outlook 教學與研習 (1) - 設定及收發郵件 - 設定郵件規則 陽明大學資訊與通信中心 陳坤元 2006/03/27.
Cambridge Scientific Abstracts 系列資料庫 圖 書 館
指導教授 : 林啟芳 教授 組員 : 邱秉良 林育賢. 何謂 GPS  GPS 即全球定位系統,是一個中距離圓 型軌道衛星導航系統。它可以為地球表面 絕大部分地區( 98% )提供準確的定位、 測速和高精度的時間標準。
1 Introduction to Java Programming Lecture 2: Basics of Java Programming Spring 2010.
幼兒行為觀察與記錄 第八章 事件取樣法.
VHDL語法(3).
Playing Game with Algorithms: Algorithmic Combinatorial Game Theory OUTLINE 1.Introduction 2.Combinatorial Game Theory 3.Algorithms for Two-Player Games.
節能轉接插座 認知科學研究所陳啟彰. 設計緣起 不使用的電器如未將插頭拔除, 仍會有少量的電力損耗,這類的 電力損耗稱之為待機損耗 (stand- by loss) 。 不使用的電器如未將插頭拔除, 仍會有少量的電力損耗,這類的 電力損耗稱之為待機損耗 (stand- by loss) 。 家庭用電中,待機損耗約佔總耗.
Filtering of Spam s Using Back-Propagation Neural Networks Class :資四A Professor :楊維忠 Reporter :林文仁 Team Members :江念庭 林俊宇 黃國峰.
Contextual Search and Name Disambiguation in Using Graphs Einat Minkov, William W. Cohen, Andrew Y. Ng Carnegie Mellon University and Stanford University.
1 Chap. 7 Response of First-Order RL and RC Circuits Contents 7.1 The Natural Response of an RL Circuit 7.2 The Natural Response of an RC Circuit 7.3 The.
ClusCite:Effective Citation Recommendation by Information Network-Based Clustering Date: 2014/10/16 Author: Xiang Ren, Jialu Liu,Xiao Yu, Urvashi Khandelwal,
ORec : An Opinion-Based Point-of-Interest Recommendation Framework
Customized of Social Media Contents using Focused Topic Hierarchy
Sourse: WSDM 2017 Advisor: Jia-Ling Koh Speaker: Hsiu-Yi,Chu
Open question answering over curated and extracted knowledge bases
Speaker: Jim-an tsai advisor: professor jia-lin koh
Speaker: Jim-an tsai advisor: professor jia-lin koh
A Large Scale Prediction Engine for App Install Clicks and Conversions
Speaker: Jim-An Tsai Advisor: Professor Jia-ling Koh
Identifying Decision Makers from Professional Social Networks
Enriching Taxonomies With Functional Domain Knowledge
Probabilistic Visitor Stitching on Cross-Device Web Logs
A Data-Driven Question Generation Model for Educational Content
Presentation transcript:

Smart Reply: Automated Response Suggestion for Email Speaker: Jim-An Tsai Advisor: Professor Jia-ling Koh Author: Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufmann, Andrew Tomkins, Balint Miklos, Greg Corrado, Laszlo Lukacs, Marina Ganea,Peter Young, Vivek Ramavajjala Date:2017/4/25 Source: KDD ’16

Outline Introduction Method Experiment Conclusion

Motivation

Purpose

Framework

Outline Introduction Method Experiment Conclusion

Preprocessing When email message input, it will do 1. Language detection:排除英文之外的語言 2. Tokenization:將信件主題跟信件內容都切成words和標點符號。 3. Sentence segmentation:將sentences分段 4. Normalization:將人名、URL連接…等用一個特殊符號取代 5. Quotation removal:引用的內容移除 6. Salutation/close removal:稱謂移除

Challenges Response quality How to ensure that the individual response options are always high quality in language and content. Utility How to select multiple options to show a user so as to maximize the likelihood that one is chosen. Scalability How to efficiently process millions of messages per day while remaining within the latency requirements of an email delivery system. Privacy How to develop this system without ever inspecting the data except aggregate statistics.

Triggering The triggering module is the entry point of the Smart Reply system. Not all emails need response suggestions.(eg. Promotional emails, open-ended questions…etc) Based on feedforward neural network[9] >>Produces a probability score for every incoming message. If the score is above some threshold, we trigger and run the LSTM scoring. 它的輸出值只取決於目前時刻的輸入值,這樣的類神經網路稱為 feedforward neural network 。 https://www.itsfun.com.tw/%E5%89%8D%E9%A5%8B%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF/wiki-1552427-5569107#感知器

Triggering The goal is to model P(y = true|o), the probability that message o will have a response on mobile.(y=(true,false), o = incoming messages). Training features: content features(eg: unigram, bigrams)from the message body, subject and headers. feedforward neural network 它的輸出值只取決於目前時刻的輸入值,這樣的類神經網路稱為 feedforward neural network 。 https://en.wikipedia.org/wiki/Feedforward_neural_network

Response selection(LSTM) Example:

Response selection(LSTM) LSTM model: Training: o: original messages, r: possible responses http://www.zmonster.me/notes/sequence_to_sequence_learning.html http://www.zmonster.me/2016/05/29/sequence_to_sequence_with_keras.html

Response selection(LSTM) Inference(using beam search): Beam Search: http://blog.csdn.net/girlhpp/article/details/19400731

Response selection(LSTM) Beam Search:

Permitted responses and clusters 1. Canonicalizing email responses Ex: “Thanks for your kind update.”, “Thank you for updating.” means the same information. >>using dependency parser to generate a canonicalized representation.

Permitted responses and clusters 2. Semantic intent clustering Ex: “ha ha”, “lol”, “Oh that’s funny!”>> funny cluster Using scalable graph algorithm[15] 3. Graph construction Purpose: construct a based graph with frequent response messages. Ex:

Permitted responses and clusters 4. Semi-supervised Learning using EXPANDER[15] for optimization

Diversity selection

Outline Introduction Method Experiment Conclusion

Data Set Training set: 238 million messages, including 153 million messages that have no responses

Results for Triggering Split the data set to Train80%, Test 20% AUC of the triggering model is 0.854.

Results for Response selection Perplexity is a measure of how well the model has fit the data: a model with lower perplexity assigns higher likelihood to the test responses, so we expect it to be better at predicting responses. The perplexity of the Smart Reply LSTM is 17.0. an n-grams language model with Katz backoff [11] and a maximum order of 5 has a perplexity of 31.4 on the same data. Response ranking

Results for diversity

Outline Introduction Method Experiment Conclusion

Conclusion We presented Smart Reply, a novel end-to-end system for automatically generating short, complete email responses. The core of the system is a state-of-the-art deep LSTM model that can predict full responses, given an incoming email message.