Cross-validation and Local Regression Lab

Slides:



Advertisements
Similar presentations
Working with Forms. how are forms manipulated? the document object contains an array of forms objects, one for each form, in document order –forms[] any.
Advertisements

RECITATION 1 APRIL 14 Lasso Smoothing Parameter Selection Splines.
Using SPSS for Simple Regression UDP 520 Lab 6 Lin November 27 th, 2007.
1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 3b, February 7, 2014 Lab exercises: datasets and data infrastructure.
1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 11a, April 14, 2015 Interpreting cross-validation, bootstrapping, bagging, boosting, etc.
1 Peter Fox Data Analytics – ITWS-4963/ITWS-6965 Week 13a, April 22, 2014 Boosting, dimension reduction and a preview of the return to Big Data.
August 25, 2009Session 1aSlide 1 PSC 5940: Workshop on Quantitative Research Session 1 Fall, 2009.
TEXT ANALYTICS - LABS Maha Althobaiti Udo Kruschwitz Massimo Poesio.
Geology 1023 Environments & Facies. Sediments are being deposited in various locations simultaneously Conditions vary from place to place –Medium –Speed.
1 Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 3b, February 12, 2016 Lab exercises /assignment 2.
1 Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 12a, April 19, 2016 Cross-validation, Revisiting Regression – local models, and non-parametric…
1 Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 12b, April 22, 2016 Cross-validation and Local Regression Lab.
Peter Fox and Greg Hughes Data Analytics – ITWS-4600/ITWS-6600
Ggplot2 Wu Shaohuan.
Data Analytics – ITWS-4600/ITWS-6600
Peter Fox and Greg Hughes Data Analytics – ITWS-4600/ITWS-6600
Lab exercises: beginning to work with data: filtering, distributions, populations, significance testing… Peter Fox and Greg Hughes Data Analytics – ITWS-4600/ITWS-6600.
Group 1 Lab 2 exercises /assignment 2
National Taiwan University
Classification, Clustering and Bayes…
Data Analytics – ITWS-4963/ITWS-6965
Chronological age prediction based on DNA methylation: Massive parallel sequencing and random forest regression  Jana Naue, Huub C.J. Hoefsloot, Olaf.
Labs: Dimension Reduction, Factor Analysis
Labs: Dimension Reduction, Factor Analysis
Basic Factoring Review
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
Using SPSS for Simple Regression
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
Group 1 Lab 2 exercises and Assignment 2
Digital Cross Sections Lab
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
What are the characteristics of light? How does light behave?
A Gentle Introduction to R from a SAS Programmer’s Perspective
Labs: Dimension Reduction, Multi-dimensional Scaling, SVM
التدريب الرياضى إعداد الدكتور طارق صلاح.
علم النفس التحليلي كارل غوستاف يونغ
Cross-validation and Local Regression Lab
INTEGRATED SERVICES IN CHEMICAL DEVELOPMENT
Classification, Clustering and Bayes…
Assignment 2 (in lab) Peter Fox and Greg Hughes
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
Section 5.3A: Similar Triangles
Local Regression, LDA, and Mixed Model Lab
Interpreting: MDS, DR, SVM Factor Analysis
ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960
Labs: Trees, Dimension Reduction, Multi-dimensional Scaling, SVM
Lab weighted kNN, decision trees, random forest (“cross-validation” built in – more labs on it later in the course) Peter Fox and Greg Hughes Data Analytics.
ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960
Cross section: Triangle
Cross-validation Brenda Thomson/ Peter Fox Data Analytics
2/28/2019 Exercise 1 In the bcmort data set, the four-level factor cohort can be considered the product of two two-level factors, say “period” (
Peter Fox Data Analytics – ITWS-4600/ITWS-6600 Week 10b, April 8, 2016
ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960
Cross-validation and Local Regression Lab
Analysis for Predicting the Selling Price of Apartments Pratik Nikte
Classification, Clustering and Bayes…
Local Regression, LDA, and Mixed Model Lab
Geology 1023 Environments & Facies.
Lab Mass and Weight Page 51 – November 1, 2017.
Data Analytics – ITWS-4600/ITWS-6600/MATP-4450
ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960
Group 1 Lab 2 exercises and Assignment 2
Data Analytics course.
Construction Homework for Wednesday 23rd November (This is compulsory work!) Research Structurally Insulated Panels (SIPS) and Cavity Wall Construction.
Python Reserved Words Poster
Online Pogo Game Customer Service
Pogo Game Customer Care Helpline Number

Call Pogo Contact Phone Number and Enjoy Pogo Game
Presentation transcript:

Cross-validation and Local Regression Lab Peter Fox Data Analytics ITWS-4600/ITWS-6600/MATP-4450/CSCI-4960 Group 4 Lab 1, November 16, 2018

Diamonds require(ggplot2) # or load package first data(diamonds) head(diamonds) # look at the data! # ggplot(diamonds, aes(clarity, fill=cut)) + geom_bar() ggplot(diamonds, aes(clarity)) + geom_bar() + facet_wrap(~ cut) ggplot(diamonds) + geom_histogram(aes(x=price)) + geom_vline(xintercept=12000) ggplot(diamonds, aes(clarity)) + geom_freqpoly(aes(group = cut, colour = cut))

Cross-validation - cvTools group4/lab1_cv{1,18}.R – try params

Smoothing/ local … http://cran.r-project.org/doc/contrib/Ricci-refcard-regression.pdf Review this and apply to datasets in labs…

Scripts in the usual place group4/lab1_svmreg*.R group4/lab1_knnreg*.R group4/lab1_loess*.R group4/lab1_pls*.R group4/lab1_lplm*.R group4/lab1_quant*.R group4/lab1_ridge*.R group4/lab1_splines*.R