Functions Inverses.

Slides:



Advertisements
Similar presentations
Maths revision course by Miriam Hanks
Advertisements

Harder one: A function is defined by : f(x) = (x+3)(x-5) Find the inverse and state the domain and range of f(x) and f -1 (x)
Inverse functions  Recap of inverse of a function.  Inverse functions with e x and ln x.
Quadratic and Square Root Inverse Relationships with Restrictions
Functions Part I Recap.
3.2 Functions.
All pupils are confident with function notation including:
INVERSE FUNCTIONS.
Functions.
Functions composite.
Integration By parts.
Trig Graphs And equations.
Reciprocal Trigonometric functions.
Some types of POLAR CURVES Part 2.
Quadratics Completed square.
Inequalities Quadratic.
Some types of POLAR CURVES.
Domain and range.
Domain and range.
Indices-algebra.
Definite Integrals.
A function is given by a formula. Determine whether it is one-to-one
POLAR CURVES Tangents.
POLAR CURVES Intersections.
Integration.
Partial fractions Repeated factors.
Natural Logarithm function
Differentiation Gradient problems.
Challenging problems Area between curves.
Integration 2a.
Inverse Functions


Increasing and decreasing
FM Series.

FM Series.
Modulus Function.
Quadratics graphs.
Methods in calculus.
FM Series.
Indices-algebra.
Methods in calculus.
Trig Equations.
Composite functions.
Trig Equations.
Integration.
Methods in calculus.
32
Methods in calculus.
Hyperbolic functions.
Functions Inverses.
Roots of polynomials.
INVERSE FUNCTIONS After learning this topic you will be able… to recognize from the graph of a function whether the function has an inverse; to.
Further binomial Series expansion.
Integration Volumes of revolution.
1.6 - Relations.
Methods in calculus.
Methods in calculus.
Modulus Function.
3-1 Relations A relation is a set of points.
Inequalities Linear.
Functions.
Graphs Transformations.
Graphs Transformations.
Surds Multiplication And DOTs
Determinant Of matrices.
Function Notation L.O. All pupils can understand function notation
Methods in calculus.
POLAR CURVES Tangents.
Presentation transcript:

Functions Inverses

Functions Inverses Starter: KUS objectives BAT Find the inverse of functions BAT understand the inverse of a function graphically Starter:

An Inverse function is an ‘opposite’ function Notes An Inverse function is an ‘opposite’ function e.g. The inverse of f (x) is written as: f-1(x) and

𝑓 −1 𝑥 = 𝑥+8 2 𝑔 −1 𝑥 = 𝑥−7 𝑓 −1 0 =4 𝑔 −1 7 =0 𝑓 −1 4 =6 𝑔 −1 15 =2 2 WB1 f and g are functions defined by 𝑓 𝑥 = 1 2 𝑥−8 and 𝑔 𝑥 = 𝑥 2 +7 Find the inverse functions 𝑓 −1 (𝑥) and 𝑔 −1 (𝑥) and find a) 𝑓 −1 (0) 𝑓 −1 (4) 𝑓 −1 (2𝑥) and b) 𝑔 −1 (7) 𝑔 −1 (15) 𝑔 −1 𝑥 3 × 1 2 −8 +8 ÷2 𝑥 2 +7 −7 𝑥 𝑓 −1 𝑥 = 𝑥+8 2 𝑔 −1 𝑥 = 𝑥−7 𝑓 −1 0 =4 𝑔 −1 7 =0 𝑓 −1 4 =6 𝑔 −1 15 =2 2 𝑔 −1 𝑥 3 = 𝑥 3 −7 = 𝑥−21 3 𝑓 −1 2𝑥 = 2𝑥+8 2 =𝑥+4

𝑥= 𝑦 2 3 −5 ⇒ 𝑦 2 =3(𝑥+5) ⇒ 𝑦= 3(𝑥−5) 𝑓 −1 𝑥 = 3(𝑥−5) , 𝑥>5 WB2a SWAPPING METHOD Find the inverse of each of these functions 𝑓 𝑥 = 𝑥 2 3 −5 x∈𝑅 b) 𝑔 𝑥 = 6 3𝑥−2 c) ℎ 𝑥 = 3𝑥+2 2𝑥−5 𝑥= 𝑦 2 3 −5 Step 1 swap x and y around Step 2 rearrange until you get y = … ⇒ 𝑦 2 =3(𝑥+5) ⇒ 𝑦= 3(𝑥−5) Step 3 write in function notation, write the domain if you know it 𝑓 −1 𝑥 = 3(𝑥−5) , 𝑥>5

𝑥 3𝑦−2 =6 ⇒ 3𝑥𝑦−2𝑥=6 ⇒ 𝑦= 2𝑥+6 3𝑥 ⇒ 3𝑦𝑥=2x+6 𝑔 −1 𝑥 = 2𝑥+6 3𝑥 , 𝑥≠0 WB2b Find the inverse of each of these functions a) 𝑓 𝑥 = 𝑥 2 3 −5 x∈𝑅 b) 𝑔 𝑥 = 6 3𝑥−2 c) ℎ 𝑥 = 3𝑥+2 2𝑥−5 𝑥= 6 3𝑦−2 Step 1 swap x and y around Step 2 rearrange until you get y = … 𝑥 3𝑦−2 =6 ⇒ 3𝑥𝑦−2𝑥=6 ⇒ 3𝑦𝑥=2x+6 ⇒ 𝑦= 2𝑥+6 3𝑥 Step 3 write in function notation, write the domain if you know it 𝑔 −1 𝑥 = 2𝑥+6 3𝑥 , 𝑥≠0

⇒ 2𝑥𝑦−3𝑦=2+5𝑥 ⇒ 𝑥 2𝑦−5 =3𝑦+2 ⇒ 𝑦= 5𝑥+2 2𝑥−3 ⇒ 𝑦(2𝑥−3)=2+5𝑥 WB2c Find the inverse of each of these functions a) 𝑓 𝑥 = 𝑥 2 3 −5 x∈𝑅 b) 𝑔 𝑥 = 6 3𝑥−2 c) ℎ 𝑥 = 3𝑥+2 2𝑥−5 𝑥= 3𝑦+2 2𝑦−5 Step 1 swap x and y around Step 2 rearrange until you get y = … ⇒ 𝑥 2𝑦−5 =3𝑦+2 ⇒ 2𝑥𝑦−3𝑦=2+5𝑥 ⇒ 𝑦= 5𝑥+2 2𝑥−3 ⇒ 𝑦(2𝑥−3)=2+5𝑥 Step 3 write in function notation, write the domain if you know it ℎ −1 𝑥 = 5𝑥+2 2𝑥−3 , 𝑥≠0

𝑓 −1 𝑥 = 𝑎𝑟𝑐𝑠𝑖𝑛 3𝑥+15 −1 2 , 4 3 <𝑥<2 WB 3a Find the inverse of each of these functions a) 𝑓 𝑥 = sin (2𝑥+1) 3 −5 x∈𝑅 b) 𝑔 𝑥 = 𝑒 3𝑥−2 c) ℎ 𝑥 = ln 4−6𝑥 𝑥= sin (2𝑦+1) 3 −5 Step 1 swap x and y around Step 2 rearrange until you get y = … ⇒3(𝑥+5)= sin (2𝑦+1) ⇒ 2𝑦+1=𝑎𝑟𝑐𝑠𝑖𝑛 3(𝑥+5) ⇒ 𝑦= 𝑎𝑟𝑐𝑠𝑖𝑛 3𝑥+15 −1 2 Step 3 write in function notation, write the domain if you know it 𝑓 −1 𝑥 = 𝑎𝑟𝑐𝑠𝑖𝑛 3𝑥+15 −1 2 , 4 3 <𝑥<2

𝑥= 𝑒 3𝑦−2 ⇒ ln 𝑥 =3𝑦−2 ⇒ 𝑦= 1 3 2+ ln 𝑥 𝑔 −1 𝑥 = 1 3 2+ ln 𝑥 , 𝑥>0 WB 3b Find the inverse of each of these functions a) 𝑓 𝑥 = sin (2𝑥+1) 3 −5 x∈𝑅 b) 𝑔 𝑥 = 𝑒 3𝑥−2 c) ℎ 𝑥 = ln 4−6𝑥 𝑥= 𝑒 3𝑦−2 Step 1 swap x and y around Step 2 rearrange until you get y = … ⇒ ln 𝑥 =3𝑦−2 ⇒ 𝑦= 1 3 2+ ln 𝑥 Step 3 write in function notation, write the domain if you know it 𝑔 −1 𝑥 = 1 3 2+ ln 𝑥 , 𝑥>0

𝑥= ln 4−6𝑦 ⇒ 𝑒 𝑥 =4 −6𝑦 ⇒ 𝑦= 1 6 4− 𝑒 𝑥 𝑔 −1 𝑥 = 1 6 4− 𝑒 𝑥 , 𝑥∈𝑅 WB 3c Find the inverse of each of these functions a) 𝑓 𝑥 = sin (2𝑥+1) 3 −5 x∈𝑅 b) 𝑔 𝑥 = 𝑒 3𝑥−2 c) ℎ 𝑥 = ln 4−6𝑥 𝑥= ln 4−6𝑦 Step 1 swap x and y around Step 2 rearrange until you get y = … ⇒ 𝑒 𝑥 =4 −6𝑦 ⇒ 𝑦= 1 6 4− 𝑒 𝑥 Step 3 write in function notation, write the domain if you know it 𝑔 −1 𝑥 = 1 6 4− 𝑒 𝑥 , 𝑥∈𝑅

𝑎) 𝑓 𝑥 = (𝑥−3) 2 −1 b) 𝑔 𝑥 =3 (𝑥−2) 2 +6 Let 𝑥= (𝑦−3) 2 −1 WB 4 Rearrange each function to complete square form then find its inverse a) 𝑓 𝑥 = 𝑥 2 +6𝑥+8 x∈𝑅 b) 𝑔 𝑥 = 3𝑥 2 −12𝑥+18 𝑎) 𝑓 𝑥 = (𝑥−3) 2 −1 b) 𝑔 𝑥 =3 (𝑥−2) 2 +6 Let 𝑥= (𝑦−3) 2 −1 Let 𝑥=3 (𝑦−2) 2 +6 (𝑦−3) 2 =𝑥+1 (𝑦−2) 2 = 𝑥−6 3 𝑦−3= 𝑥+1 𝑦−2= 𝑥−6 3 𝑦=3+ 𝑥+1 𝑔 −1 𝑥 =2+ 𝑥−6 3 , 𝑥≥6 𝑓 −1 𝑥 =3+ 𝑥+1 , 𝑥≥−1

Think Pair 𝑓 𝑥 =2𝑥+1 and 𝑓 −1 𝑥 = 𝑥−1 2 share Use graph software WB 5 Sketch each pair of functions on the same set of axes 𝑓 𝑥 =2𝑥+1 and 𝑓 −1 𝑥 = 𝑥−1 2 𝑔 𝑥 = 𝑥 2 and 𝑔 −1 𝑥 = 𝑥 Use graph software What do you notice?

𝑓 𝑥 Domain 𝒙<𝟖 Range 𝒚 𝝐 𝑹 Notes 𝑓 𝑥 Domain 𝒙<𝟖 Range 𝒚 𝝐 𝑹 Domain of f is range of its inverse … range of f is domain of its inverse 𝑓 −1 𝑥 Domain 𝒙 𝝐 𝑹 Range 𝒚<𝟖

a) ⇒ ln 𝑦 𝑥 = 4𝑡 b) ⇒ 𝑒 2𝑥 = 𝑦 5 ⇒ 2𝑥= ln 𝑦 5 ⇒ y x = 𝑒 4𝑡 Think Pair Share WB6 a) Make x the subject of: 𝑙𝑛𝑦 −𝑙𝑛𝑥=4𝑡 b) Make x the subject of: 𝑦 = 5𝑒 2𝑥 a) ⇒ ln 𝑦 𝑥 = 4𝑡 b) ⇒ 𝑒 2𝑥 = 𝑦 5 ⇒ 2𝑥= ln 𝑦 5 ⇒ y x = 𝑒 4𝑡 ⇒ 𝑥= 1 2 ln 𝑦 5 ⇒ 𝑦= 𝑥 𝑒 4𝑡 ⇒ 𝑥=𝑦 𝑒 −4𝑡

WB7 The function f is defined by 𝑓:𝑥→ ln 3𝑥−2 , 𝑥∈ℛ, 𝑥≥ 2 3   Find 𝑓 −1 (𝑥) State the domain of 𝑓 −1 (𝑥) 𝑦= 2 3 𝑓 𝑥 = ln 3𝑥−2 Let 𝑥= ln 3𝑦−2 𝑒 𝑥 = 3𝑦 −2 𝑦 = 𝑒 𝑥 +2 3 𝑓 −1 (𝑥) = 𝑒 𝑥 +2 3 Domain 𝑥∈ℛ

WB8 The function f is defined by 𝑓:𝑥→ 2𝑒 𝑥+1   Find 𝑓 −1 (𝑥) State the domain of 𝑓 −1 (𝑥) 𝑓 𝑥 = 2𝑒 𝑥+1 Let 𝑥= 2𝑒 𝑦+1 𝑒 𝑦+1 = 𝑥 2 Domain 𝑥∈ℛ, 𝑥>0 𝑦+1= ln 𝑥 2 𝑓 −1 𝑥 = ln 𝑥 2 −1 Domain 𝑥∈ℛ, 𝑥>0

a) = 4 𝑥+7 𝑥+7 + 3 𝑥+7 = 4𝑥+31 𝑥+7 b) Let x= 4𝑦+31 𝑦+7 ⇒ x y+7 =4𝑦+31 WB9 exam Q 𝑓 𝑥 =4+ 3 𝑥+7 x∈𝑅, 𝑥≠7 a) Express 4+ 3 𝑥+7 s a single fraction Find an expression for 𝑓 −1 𝑥 write the domain of 𝑓 −1 𝑥 a) = 4 𝑥+7 𝑥+7 + 3 𝑥+7 = 4𝑥+31 𝑥+7 b) Let x= 4𝑦+31 𝑦+7 ⇒ x y+7 =4𝑦+31 ⇒ 𝑥𝑦−4𝑦=31−7𝑥 ⇒ 𝑦= 31−7𝑥 𝑥−4 c) Domain 𝑥∈𝑅 𝑥≠4

a) Let x=1+ 3 𝑦−3 ⇒ (𝑥−1) 2 = 3 𝑦+3 ⇒ 𝑦+3= 3 (𝑥−1) 2 ⇒ 𝑦= 3 (𝑥−1) 2 −3 WB10 exam Q 𝑓 𝑥 =1+ 3 𝑥−3 x∈𝑅, 𝑥≠3 a) Find an expression for 𝑓 −1 𝑥 write the domain of 𝑓 −1 𝑥 a) Let x=1+ 3 𝑦−3 ⇒ (𝑥−1) 2 = 3 𝑦+3 ⇒ 𝑦+3= 3 (𝑥−1) 2 ⇒ 𝑦= 3 (𝑥−1) 2 −3 b) Domain 𝑥∈𝑅 𝑥≠1

BAT understand the inverse of a function graphically KUS objectives BAT Find the inverse of functions BAT understand the inverse of a function graphically self-assess One thing learned is – One thing to improve is –

END