Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm]

Slides:



Advertisements
Similar presentations
Liquids and Gasses Matter that “Flows”
Advertisements

Density and Pressure. Density and Pressure Define density Understand relative density Define and use the term pressure Learn the instruments used for.
Why is a standard measurement system important?
Pitot Stagnation Tubes Under Laminar Conditions *P7.24 Jace Benoit February 15, 2007.
The density of a material can easily be calculated if we are given the mass and volume of a sample.
Fluid Statics.
Measurements and the Metric System
Units of Measurement Section 2.
DIFFERENTIAL MANOMETER
Simple U-TUBE Manometer
Matter ***.
(A) Unit Conversions and (B) Chemical Problem Solving Chemistry 142 B James B. Callis, Instructor Winter Quarter, 2006 Lecture #2.
Chapter 10 Fluids.
Scientific experiments often involve making measurements We use the metric system in science! We measure length, weight and mass, area and volume, density,
CHAPTER 5: PRESSURE 5.1 Pressure and Its Units
Intro to Physics. Scientific notation is a system that makes it easy to work with the huge range of numbers needed to describe the physical world. Even.
Pressure; Pascal’s Principle
PRESSURE Presented by: Catherine G.Tumaliuan Novaliches High School Quezon City,Philippines April 12,2010.
Chapter 2 Standards of Measurement Objectives:  Understand Mass and Weight (2.1)  Identify the metric units of measurement (2.6)  Explain what causes.
Chapter 10 Fluids. Units of Chapter 10 Phases of Matter Density Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal’s Principle Measurement.
Introduction To Fluids. Density  = m/V  = m/V   : density (kg/m 3 )  m: mass (kg)  V: volume (m 3 )
Chapter 1.4. < BackNext >PreviewMain Tools for Measuring Tools for Analyzing Stopwatches, metersticks, thermometers, and balances are examples of tools.
Multi Equation Problems. At this point, you know a few equations… p = m * v D = m/V F = m*a s = d/t a = (v f -v i )/t F w = m*g Do any of these equations.
Height Differences Using Flat-Plate Boundary Layer Problem 7.24* Pamela Christian BIEN 301 Individual Project February 15, 2007.
Preview Lesson Starter Objectives Units of Measurement SI Measurement SI Base Units Derived SI Units Conversion Factors Chapter 2 Section 2 Units of Measurement.
Problems Dr. Kagan ERYURUK.
Chapter 2 © Houghton Mifflin Harcourt Publishing Company Units of Measurement Measurements represent quantities. A quantity is something that has magnitude,
Density Equation m V d SymbolVariableUnits dDensityg/cm 3 or g/mL mMassgrams VVolumecm 3 or mL.
Matter Review. What is the definition of density?
How much would a cubic meter of water weigh? Water 1m 3 Water 1m 3 Water has a density of 1g/cm 3. What is the mass of one cubic meter of water?
Why does he need to equalise his ears on the way down? What would happen if he just shot up to the surface from 20m down?
Dynamic Fluids. Concept Checker Ideal fluids have three main components. What are they?
Lesson 6: Mathematical Models of Fluid Flow Components ET 438a Automatic Control Systems Technology lesson6et438a.pptx1.
Chapter 2 Table of Contents Section 1 Scientific Method
Atmospheric pressure (Gas pressure)
Do Now: Working only with the people at your table, measure the length, width, and height of the room. DO NOT discuss your results with other groups. Record.
Density.
Pressure in Solids.
MEASUREMENT IN SCIENCE
DENSITY - an important and useful physical property
bellringer True or false? More mass means less matter?
Length, mass, and time.
SCIENTIFIC MEASUREMENT
When you catch a deep-sea fish, why does its eyes pop-out?
Density and Pressure.
Metric Review.
DENSITY AND PRESSURE.
Chapter 3 Scientific Measurement 3.2 Units of Measurement
Find: FR [N] R water d FR R = 20 [m] circular 1.62*107 gate 1.72*107
Properties of Matter.
Find: Wsphere,A [lbf] in air wsphere,w = 85 [lbf] in water Tw = 60 F
Find: Wcone [lbf] D D = 3 [ft] air SGo = 0.89 d3 SGw= 1.00 oil d2
Units of Measurement.
Find: P4,gauge [lb/in2] Liquid S.G. P1,abs=14.7 [lb/in2] A 1.20
Densities of Some Common Materials
Section 2 Units of Measurement
Chapter 2 Units of Measurement Measurements represent quantities.

Find: F [lbf] in order to keep the gate vertical air F 267 water 293
Static flow and Its Application
Find: FR [kN] door 0.4 [m] 0.4 [m] door FR 0.3 [m] hinge wall
Find: FR [kN] on the door Twater= 30 C 1.5 [m] door water wall 1 [m]
Chapter Two: Introduction to Engineering Calculations
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: SG air Wcyl,A=350 [N] fluid Wcyl,S=200 [N] r h
Find: hL [m] rectangular d channel b b=3 [m]
Find: hT Section Section
Pressure in a fluid Pressure in a fluid acts equally in all directions
The Scientific Method.
Metric Review.
Presentation transcript:

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water Find the change in pressure, between point F and point A, in pascals. [pause] In this problem, --- A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water a monometer contains 5 different fluids, which include, --- A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water benzene, --- A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water mercury, ---- A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water kerosine, --- A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water water, --- A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water and air. [pause] A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water The vertical distance between adjacent liquid interfaces, --- A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water is either given, or, can be calculated from the given distances. Points A and F, --- A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water are located at the two ends of the manometer, and, the temperature is, --- A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water 20 degrees, celsius. [pause] The problem asks for --- A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] T=20 C kerosine benzene 40 [cm] air A F 20 [cm] 8 [cm] mercury water delta P, of A, F. Which is the same as, the pressure at point F, --- A) -8,900 B) -900 C) 900 D) 8,900

Find: ΔPAF [Pa] ΔPAF=PF - PA kerosine T=20 C air 40 [cm] benzene H O A minus the pressure at point A. This pressure difference can be computed using the general equation, --- benzene H O 2 A F Hg 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] ΔPAF=PF - PA ΔP=-ρ* g *Δh kerosine T=20 C air 40 [cm] for the change in pressure across a fluid medium, delta p, equals negative rho, g, delta h. Where, delta p, equals, --- benzene H O 2 A F Hg 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] ΔPAF=PF - PA ΔP=-ρ* g *Δh pressure difference kerosine T=20 C air 40 [cm] the change in pressure, rho, --- benzene H O 2 A F Hg 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] density ΔPAF=PF - PA ΔP=-ρ* g *Δh pressure difference o kerosine T=20 C air 40 [cm] is the density of the fluid, g, --- benzene H O 2 A F Hg 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] density ΔPAF=PF - PA ΔP=-ρ* g *Δh pressure constant difference acceleration o kerosine T=20 C air 40 [cm] is the gravitational acceleration constant, and delta h, --- benzene H O 2 A F Hg 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] density ΔPAF=PF - PA ΔP=-ρ* g *Δh change in height pressure constant difference acceleration o kerosine T=20 C air 40 [cm] is the change height in the fluid, between the two points whose pressure difference is being calculated. This equation is only valid if, --- benzene H O 2 A F Hg 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] constant density ΔPAF=PF - PA ΔP=-ρ* g *Δh change in height pressure constant difference acceleration o kerosine T=20 C air 40 [cm] the density is constant. If we want to find the pressure difference between 2 points, --- benzene H O 2 A F Hg 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] constant density ΔPAF=PF - PA ΔP=-ρ* g *Δh change in height pressure constant difference acceleration o kerosine T=20 C air 40 [cm] which are separated by multiple fluids, having different densities, then, we must, --- benzene H O 2 A F Hg 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] constant density ΔPAF=PF - PA ΔP=-ρ* g *Δh change in height ΔP=-g * Σ ρ * Δh for multiple densities o kerosine T=20 C air 40 [cm] compute the pressure difference for each density, and sum those pressure differences together. In our problem, --- benzene H O 2 A F Hg 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] constant density ΔPAF=PF - PA ΔP=-ρ* g *Δh change in height ΔP=-g * Σ ρ * Δh for multiple densities o kerosine T=20 C air 40 [cm] there are 5 different fluids in the manometer, so we’ll use ---- benzene H O 2 A F Hg 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] constant density ΔPAF=PF - PA ΔP=-ρ* g *Δh change in height ΔP=-g * Σ ρ * Δh for multiple densities o kerosine T=20 C air 40 [cm] the second eqauation. [pause] For convenience sake, we’ll define the points, B, --- benzene H O 2 A F Hg 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] constant density ΔPAF=PF - PA ΔP=-ρ* g *Δh change in height ΔP=-g * Σ ρ * Δh for multiple densities o kerosine T=20 C air 40 [cm] D C, D, and E, at the fluid boundaries. This makes it easier to write out, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] ΔPAF=-g * Σ ρ * Δh ΔP=-g * Σ ρ * Δh for multiple densities o kerosine T=20 C air 40 [cm] D our equation for delta P, of A, F. [pause] After expanding the summation term, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } ΔPAF=-g * Σ ρ * Δh ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) 2 +ρair*(hF-hE) } o kerosine T=20 C air 40 [cm] D we see all the density and height terms we need to determine, in order to solve the problem. [pause] First of all we know, g, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } g = 9.81 [m/s2] ΔPAF=-g * Σ ρ * Δh ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) 2 +ρair*(hF-hE) } o kerosine T=20 C air 40 [cm] D equals 9.81 meters per second squared. Next, we’ll use the figure to determine, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } g = 9.81 [m/s2] ΔPAF=-g * Σ ρ * Δh ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) 2 +ρair*(hF-hE) } o kerosine T=20 C air 40 [cm] D the change in heights, between adjacent fluid interfaces. Height B, minus, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } g = 9.81 [m/s2] -20 [cm] ΔPAF=-g * Σ ρ * Δh ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) 2 +ρair*(hF-hE) } o kerosine T=20 C air 40 [cm] D height A, equals negative 20 centimeters. [pause] Height C, minus, height B, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } g = 9.81 [m/s2] 8 [cm] -20 [cm] ΔPAF=-g * Σ ρ * Δh ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) 2 +ρair*(hF-hE) } o kerosine T=20 C air 40 [cm] D equals 8 centimeters. [pause] Height D minus height C, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } g = 9.81 [m/s2] 8 [cm] -20 [cm] ΔPAF=-g * Σ ρ * Δh ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) 2 +ρair*(hF-hE) } 40 [cm]-8 [cm] o kerosine T=20 C air 40 [cm] D equals, 40 centimeters, minus 8 centimeters, which equals, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } g = 9.81 [m/s2] 8 [cm] -20 [cm] ΔPAF=-g * Σ ρ * Δh ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) 2 +ρair*(hF-hE) } 32 [cm] o kerosine T=20 C air 40 [cm] D 32 centimeters. [pause] Height E, minus height D, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } g = 9.81 [m/s2] 8 [cm] -20 [cm] ΔPAF=-g * Σ ρ * Δh ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) 2 +ρair*(hF-hE) } 32 [cm] 14 [cm]-40 [cm] o T=20 C kerosine 40 [cm] D air equals, 14 centimeters minus 40 centimters, which equals, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } g = 9.81 [m/s2] 8 [cm] -20 [cm] ΔPAF=-g * Σ ρ * Δh ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) 2 +ρair*(hF-hE) } 32 [cm] -26 [cm] o T=20 C kerosine 40 [cm] D air negative 26 centimeters. [pause] And we currently don’t know the change in height, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } g = 9.81 [m/s2] 8 [cm] -20 [cm] ΔPAF=-g * Σ ρ * Δh ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) 2 +ρair*(hF-hE) } 32 [cm] -26 [cm] o T=20 C kerosine 40 [cm] D air between points F and E. [pause] Next we’ll look up the densities, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } g = 9.81 [m/s2] 8 [cm] -20 [cm] ΔPAF=-g * Σ ρ * Δh ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) 2 +ρair*(hF-hE) } 32 [cm] -26 [cm] o T=20 C kerosine 40 [cm] D air of these 5 fluids, at standard temperature, in units of, --- benzene H O 2 A F Hg C E B 14 [cm] 20 [cm] 8 [cm]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 +ρair*(hF-hE) } 32 [cm] 9.81 s2 -26 [cm] fluid densitiy [g/cm3] benzine 0.88 grams per cubic centimeter. Then we’ll mutiply these values by 1,000, --- mercury 13.55 kerosine 0.80 water 1.00 air 0.0012

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } * -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 +ρair*(hF-hE) } 32 [cm] 9.81 s2 -26 [cm] fluid densitiy [g/cm3] benzine 0.88 to convert the densities to units of, kilograms per --- mercury 13.55 kg*cm3 kerosine 0.80 1,000 * g * m3 water 1.00 air 0.0012

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 +ρair*(hF-hE) } 32 [cm] 9.81 s2 -26 [cm] fluid densitiy [kg/m3] benzine 880 metered cubed. [pause] mercury 13,550 kg*cm3 kerosine 800 1,000 g * m3 water 1,000 air 1.2

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 +ρair*(hF-hE) } 32 [cm] 9.81 s2 -26 [cm] fluid densitiy [kg/m3] benzine 880 And after we plug these densities into --- mercury 13,550 kerosine 800 water 1,000 air 1.2

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 +ρair*(hF-hE) } 32 [cm] 9.81 s2 -26 [cm] fluid densitiy [kg/m3] benzine 880 their appropriate variables, we notice the density of air is --- mercury 13,550 kerosine 800 water 1,000 air 1.2

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 +ρair*(hF-hE) } 32 [cm] 9.81 s2 -26 [cm] fluid densitiy [kg/m3] benzine 880 so much smaller than the other densities, that we can neglect this final term, --- mercury 13,550 kerosine 800 water 1,000 air 1.2

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) +ρair*(hF-hE) } -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 +ρair*(hF-hE) } 32 [cm] 9.81 s2 -26 [cm] fluid densitiy [kg/m3] benzine 880 from, the calculation. [pause] After plugging in all the variables, --- mercury 13,550 kerosine 800 water 1,000 air 1.2

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) -20 [cm] -26 [cm] 13,550 [kg/m3] 880 [kg/m3] -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 9.81 32 [cm] -26 [cm] s2 800 [kg/m3] 1,000 [kg/m3] delta P, of A, F, equals, ----

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) -20 [cm] -26 [cm] 13,550 [kg/m3] 880 [kg/m3] -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 9.81 32 [cm] -26 [cm] s2 800 [kg/m3] 1,000 [kg/m3] negative 886,824 kilograms centimeters, per second squared meter squared. [pause] Next we’ll convert, --- kg*cm ΔPAF=-886,824 s2 * m2

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) * -20 [cm] -26 [cm] 13,550 [kg/m3] 880 [kg/m3] -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 9.81 32 [cm] -26 [cm] s2 800 [kg/m3] 1,000 [kg/m3] centimeters to meters, and then convert to units of pascals, --- kg*cm ΔPAF=-886,824 1 m * s2 * m2 100 cm

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) * * -20 [cm] -26 [cm] 13,550 [kg/m3] 880 [kg/m3] -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 9.81 32 [cm] -26 [cm] s2 800 [kg/m3] 1,000 [kg/m3] and our final pressure difference between points F and A, --- kg*cm 1 m Pa*s2*m ΔPAF=-886,824 * * s2 * m2 100 cm kg

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) * * -20 [cm] -26 [cm] 13,550 [kg/m3] 880 [kg/m3] -20 [cm] 8 [cm] ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) m 2 9.81 32 [cm] -26 [cm] s2 800 [kg/m3] 1,000 [kg/m3] equals, -8,868 pascals. [pause] kg*cm 1 m Pa*s2*m ΔPAF=-886,824 * * s2 * m2 100 cm kg ΔPAF=-8,868 [Pa]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) * * A) -8,900 B) -900 ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) when reviewing the possible solutions, --- kg*cm Pa*s2*m 1 m ΔPAF=-886,824 * * s2 * m2 100 cm kg ΔPAF=-8,868 [Pa]

Find: ΔPAF [Pa] +ρkerosine*(hD-hC)+ρH O* (hE-hD) * * A) -8,900 B) -900 answerA ΔPAF=-g * { ρbenzene*(hB-hA)+ρHg* (hC-hB) +ρkerosine*(hD-hC)+ρH O* (hE-hD) the answer is A. [fin] kg*cm Pa*s2*m 1 m ΔPAF=-886,824 * * s2 * m2 100 cm kg ΔPAF=-8,868 [Pa]

ΔP13=-ρA* g * (hAB-h1)+… 3 liquids, A, B, and C. The specific gravity of each of these 3 liquids, ---