Review materials on continuous systems II

Slides:



Advertisements
Similar presentations
Giving Feedback. The right and the wrong. >> giving feedback
Advertisements

Root Locus Diagrams Professor Walter W. Olson
Linear Subspaces - Geometry. No Invariants, so Capture Variation Each image = a pt. in a high-dimensional space. –Image: Each pixel a dimension. –Point.
Dimension Reduction by pre-image curve method Laniu S. B. Pope Feb. 24 th, 2005.
Digital Control Systems STATE FEEDBACK CONTROLLER DESIGN.
Digital Control Systems Controllability&Observability.
Outline: Introduction Solvability Manipulator subspace when n<6
1 Precalculus Review 0.1 The Real Numbers and the Cartesian Plane 0.2 Functions 0.3 Geometric Properties of Functions 0.4 Linear Functions 0.5 Quadratic.
Modern Sampling Methods Summary of Subspace Priors Spring, 2009.
Pariz-Karimpour Apr Chapter 2 Reference: Switched linear systems control and design Zhendong Sun, Shuzhi S. Ge.
Ch. 2: Rigid Body Motions and Homogeneous Transforms
Spring semester 2006 ESE 601: Hybrid Systems Review material on continuous systems I.
Spring semester 2006 ESE 601: Hybrid Systems Review materials on continuous systems II.

1 數位控制(十). 2 Continuous time SS equations 3 Discretization of continuous time SS equations.
Subspaces, Basis, Dimension, Rank
Signal Processing First CH 8 IIR Filters The General IIR Difference Equation 2 feedback term recursive filter FIR part No. of coeff. = N+M+1.
Национальная процедура одобрения и регистрации проектов (программ) международной технической помощи (исключая представление информации об организации и.
The Scientific Method. Problem or Scientific Question –Must be testable –Can’t prove something doesn’t exist.
A Fault Tolerant Control Approach to Three Dimensional Magnetic Levitation By James Ballard.
CONTROL OF MULTIVARIABLE SYSTEM BY MULTIRATE FAST OUTPUT SAMPLING TECHNIQUE B. Bandyopadhyay and Jignesh Solanki Indian Institute of Technology Mumbai,
1 Quadratic formula. y 2 Quadratic formula: Geometric interpretation Solve x 0.
2.2 Square Root of a Function Square Root of the Linear Function
MAT 4725 Numerical Analysis Section 7.1 Part I Norms of Vectors and Matrices
Modern Control System EKT 308 Transfer Function Poles and Zeros.
基 督 再 來 (一). 經文: 1 你們心裡不要憂愁;你們信神,也當信我。 2 在我父的家裡有許多住處;若是沒有,我就早 已告訴你們了。我去原是為你們預備地去 。 3 我 若去為你們預備了地方,就必再來接你們到我那 裡去,我在 那裡,叫你們也在那裡, ] ( 約 14 : 1-3)
Test Title Test Content.
Lesson 13: Effects of Negative Feedback on System disturbances
Matrix Addition and Scalar Multiplication
Matrix Multiplication
Ch. 2: Rigid Body Motions and Homogeneous Transforms
Transfer Functions.
MATH Algebra II Analyzing Equations and Inequalities
Movable lines class activity.
Pole Placement and Decoupling by State Feedback
Elementary Linear Algebra
Pole Placement and Decoupling by State Feedback
Lecture 3: Solving Diff Eqs with the Laplace Transform
I) Seeing Structure in Expressions (7 questions)
RECORD. RECORD Subspaces of Vector Spaces: Check to see if there are any properties inherited from V:
Students will be able to calculate and interpret inverse variation.
2.2 Square Root of a Function Square Root of the Linear Function
درس کنترل ديجيتال مهر 1391 بسم ا... الرحمن الرحيم
تكملة الوحدة الاولى الفصل الثاني بالكتاب للاطلاع ثم الفصل الثالث التخطيط لبناء الاختبارات التحصيلية الفصل الثالث من الكتاب (87-164)
Multivariate Analysis: Theory and Geometric Interpretation
Elementary Linear Algebra
Слайд-дәріс Қарағанды мемлекеттік техникалық университеті
.. -"""--..J '. / /I/I =---=-- -, _ --, _ = :;:.
II //II // \ Others Q.
Preliminary.
MATH CP Algebra II Exploring Quadratic Functions and Inequalities
I1I1 a 1·1,.,.,,I.,,I · I 1··n I J,-·
Similarity transformation
Summary Feedback Control (Main Take Away Points) (See also notes)
-·.-...-· A. -.. ) ,.,.. -.,., · o# --·'1>,.. ·-·-. ·-· ;'/' : ,.,. - ' p ·-·- ·-- 'II"; -.-. t-.. p
Chapter 12.
SABIKA FATIMA EEE NETWORK THEORY B.TECH II YR I SEM
MATH CP Algebra II Analyzing Equations and Inequalities
Vector Spaces, Subspaces
State Feedback.
10.3 The Inverse z-Transform
. '. '. I;.,, - - "!' - -·-·,Ii '.....,,......, -,
2.3 Properties of Linear Time-Invariant Systems
Defining Communication
Canonical Correlation Analysis
Linear Algebra Lecture 28.
Chapter 12.
Pole Position Student Points Time
A B C D.
Chapter 1 Introduction.
Presentation transcript:

Review materials on continuous systems II ESE 601: Hybrid Systems Review materials on continuous systems II

Contents Controllability Observability Invariant subspace Controller design: controlled invariance Controller design: pole placement

Reachability

Reachability of linear systems

Controllability

Controllability ?

Controllability

Controllability the inverse exists because of controllability

Controllable subspace

Controllable subspace

Contents Controllability Observability Invariant subspace Controller design: controlled invariance Controller design: pole placement

Observability

Observability

Observability

Observability

Observable subspace

Observable subspace

Contents Controllability Observability Invariant subspace Controller design: controlled invariance Controller design: pole placement

Invariant subspace

Invariant subspace

Contents Controllability Observability Invariant subspace Controller design: controlled invariance Controller design: pole placement

Controlled invariance

Controlled invariance Geometric interpretation

Controlled invariance

Controlled invariance

Controlled invariance

Contents Controllability Observability Invariant subspace Controller design: controlled invariance Controller design: pole placement

Pole placement

Pole placement SYSTEM Feedback controller

Pole placement