Interconnect Cable Design and Assembly

Slides:



Advertisements
Similar presentations
Spring Terminal Technology
Advertisements

ZH and ZR Connectors To introduce the ZH crimp style and ZR insulation displacement wire-to-board connector series.
Harness Basics and Handling Precaution for Terminals & Connectors
Amphenol Outdoor Connectors
Cabling system components
Introduction to Network
…your final connection. Mine Cable Services Corporation. Cable Repairs: Vulcanized Splices.
9-Jun-14Data Link Layer Guided Media Media that provide a conduit from one device to another. Signals travelling along any of these media is directed and.
Kevin Coke ID#: Rochede Sibblies ID#: Sandrene Haughton ID#:
N ETWORKING MEDIA. COMMON NETWORK CABLES The connection between the source and destination may either be direct or indirect, and may span multiple media.
Chapter 7 Transmission Media
HDMI cables May 2009
PLAZMA HEATING PRODUCT INDIA G-52 LAWRENCE ROAD,INDUSTRIAL AREA, NEW DELHI
To introduce the PA wire-to-board connector series.
ZE Connector To introduce the new ZE wire-to-board, crimp style connector series.
VL Connector To introduce the VL wire-to-board and wire-to-wire, crimp style connector series.
 Established in 1995  Located in Wilmington, NC with a 40,000 Sqft facility.  Specializes in the design and manufacturing of connection solutions. 
Composite Swing-Arm EMI/RFI Strain Relief.  Light Weight - Corrosion Free - Three-in-One  Straight, 45 and 90 Degrees  Integrated EMI/RFI Shield Sock.
Reducing Weight and Improving Corrosion Protection in Interconnect Cabling Systems with Composite Thermoplastic Materials.
Outstanding Performance and Availability
Reducing Weight and Improving Corrosion Protection in Interconnect Cabling Systems with Composite Thermoplastic Materials.
Overmolded Interconnect Cable Assemblies for Aerospace Applications
Electronics. Solid snap together electronic connectors.
Metal and Polymer Core Tubing Wire Protection Systems.
Glenair Interconnect Conduit Systems. Military Applications  High-reliability, high performance applications  Guided Missile Launch Systems  Shipboard/Land/Airborne.
Glenair Micro-D Connectors: New Product Offerings.
Introduction to Network (c) Nouf Aljaffan
Weight Reduction and Corrosion Protection in High Performance Interconnect Cables.
Coaxial Cable Coaxial cable (or coax) carries signals of higher frequency ranges than those in twisted pair cable, in part because the two media are constructed.
SH / SR Connectors PURPOSE: To introduce the SH crimp style and SR insulation displacement wire-to-board connector series.
Electrical Connections and Wire Harness Assembly
Physical Layer B. Konkoth.
Router. Switch Repeater Cable is the medium through which information usually moves from one network device to another. It used to connect one network.
Ultra-Lightweight Stainless Steel Micro-Filament EMI/RFI Braid.
MIL-DTL Connector Products.
© DIAMOND SA / / 1 DIAMOND AVIM Connector Fiber optic connector for aero-space applications.
Transmission Lines …….. Conductor Material
1 of 15 Coleman Cable, Inc. Copyright © 2006 All Rights Reserved. FIRE ALARM CABLE Objectives By end of this module you should able to: Know What Really.
Series 22 Geo-Marine ® Connectors, Cables and Accessories.
Transmission lines.
Die Cast – Nickel Die Cast – Black Metalized Plastic Black Plastic Grey Plastic Plastic - Assorted Colors –Available only on 972 Series.
Communication channels and transmission media
Chapter 30 Processes Used to Condition Plastic Materials.
1 Cables A large portion of electrical signals are transmitted through solid electrical solid electrical conductors. A wire is a single conductor. A cable.
Batteries The purpose of the battery is to act as a reservoir for storing electricity.
Series 80 “Mighty Mouse:” Awesome Performance, Itty-Bitty Package.
Physical Transmission
1 CCTV SYSTEMS CCTV cables. 2 CCTV SYSTEMS Cable selection is a very important consideration in the performance of a CCTV system, especially where long.
1 Quick Disconnect Power Distribution. 2 Power Distribution Methods Hardwiring o Traditional method for providing power to machines and devices o Difficult.
Welcome to this high-level overview of Glenair’s “Out of This World” interconnect capabilities. This presentation covers our complete product range, from.
Physical Transmission
Introduction to Network (c) Nouf Aljaffan
Lecture 8 Cable Certification & Testing:. Cable Distribution Cable Distribution Equipment UTP (Unshielded Twisted Pair) UTP Cable Termination Tools UTP.
Copper Media Describe the specifications and performances of different types of cable. Describe coaxial cable and its advantages and disadvantages over.
7.1 Chapter 7 Transmission Media Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
 Cables  Network Interface Card (NIC)  Repeaters  Hubs  Switches  Routers  Gateways  Bridges.
Series 77 “Full Nelson” Shrink Boots  Semi-rigid heat-shrinkable boots offer excellent electrical, mechanical and environmental protection  Rugged,
Series 77 “Full Nelson” Shrink Boots Rugged, Reliable Environmental Protection  Semi-rigid heat-shrinkable boots offer excellent electrical, mechanical.
Transmission Media. Characteristics to consider for Media Selection Throughput Cost Installation Maintenance Obsolescence vs bleeding edge Support Life.
Transmission Media The transmission medium is the physical path by which a message travels from sender to receiver. Computers and telecommunication devices.
Variable Frequency Drive (VFD) Cable VFD Cable Solutions.
Cable 101 The basics of wire & cable ©Copyright 1997, Belden Inc.
Specifying Optical Fiber Cable
Sierra Assembly Technology Inc.
Connector Accessories “De-Mystified”
1000 Hour GreyTM Ni-PTFE Plating
What Makes Voltronics Unique
Series 285 Rotary Position Sensor
Pipe fitting Threads on pipe fittings are tapered and rely on the stress generated by forcing the tapered threads of the male half of the fitting.
CST 450 Flare Stack Cable High Temperature, Fire resistant, High Voltage Single Conductor.
Presentation transcript:

Interconnect Cable Design and Assembly

The Ideal Interconnect Cable Assembly For High Performance I/O Applications Fault Free: Form, Fit and Function 100% Electrical Continuity Corrosion-Resistant Materials Maximum Flexibility and Durability Minimum Size and Weight Abrasion-Proof Coverings Crush-Proof Conduit Hi-Rel Crimp Contact Connectors Precision, Gold Plated Contacts Harsh Environmental Protection EMI Immunity

“Acceptable” Performance and Cost Dictate Design The Compromise “Acceptable” Performance and Cost Dictate Design Fit and forget vs. frequent mating cycles Exposed environmental vs. enclosed mounting Commercial vs. military High power vs. signal (or combined) Crimp vs. solder Shielded vs. unshielded

Factors That Impact Cable Design and Construction: (1) Environmental and Mechanical Fluid Immersion Chemical Resistance Abrasion Clamping Flame/outgassing Corrosion Impact/crush Shock and Vibration Temperature Cycling Altitude Fungus Pressure Extremes Pull Forces/Elongation Bend Radius Aging Strain-Relief

Factors That Impact Cable Design and Construction: (2) Electrical Current rating Wire voltage rating Wire AWG and Number Wire material/finish Insulation/dielectric EMI/EMP Impedance requirement 100 ohm pairs (Ethernet) 90 ohm pairs (USB) 75 ohm coax 50 ohm coax

Size, Weight, Flexibility, Routing, Cable Management Factors That Impact Cable Design and Construction: (3) Usability and Ergonomics Size, Weight, Flexibility, Routing, Cable Management

Interconnect Cable/Conduit Design, Materials and Construction

Connectorized System-to-System I/O Cabling From One Box to Another Box

For Non- or Partially-Connectorized Applications Feed-Thru Cabling For Non- or Partially-Connectorized Applications

(Non-Connector) Feed-Through Accessories Complete range of functional types: shield termination, strain-relief, environmental sealing etc. Split shells enable easy assembly and maintenance at any stage in the project.

Open Wire Bundle Cables Lightweight and Flexible Cable Harnesses Appropriate where no noise or crosstalk from adjacent wires is expected Prevalent for data transfer with tightly twisted pairs Shielded pairs might be inside of an unshielded cable assembly Great for routing

Open Wire Bundle Cables Used in Internal Box Wiring and Other Enclosed Non-Environmental Systems Low cost compared to overmolded or jacketed solutions Field repairable Non-Environmental Not particularly durable

Management of Open Wire Bundles Wraps/tapes Cable ties Cable clips Spiral Wrap Split tubing Expando braid Broom Stitch Others

Standard Jacketed/Shielded Cables Backshell Equipped for External Harsh Environments Shields added to twisted pairs, or multi-conductor cables, to help prevent EMI (victim or source). Jacketing extruded, shrunk on or blown on Types of jacketing based on environmental conditions such as immersion, chemical or caustic fluid exposure, corrosion potential, temperature or radiation exposure. Field maintainable, user installable backshells

Wide Range of Choices to Meet Every Need Jacketing Styles Wide Range of Choices to Meet Every Need Extruded jacketing is the best environmental sealing option Blown on jacketing—soft rubber tubing is overfilled with compressed air, cable inserted, and tubing allowed to collapse for sealing fit Both options offer a wide range of material types. Heat-shrink tubing is inexpensive, lightweight and ideal for short runs and prototypes

High-Performance Jacket Materials

Environmental Sealing for Jacketed Cables Typical exploded view of cable sealing backshell

Shield Termination Options for Jacketed/Shielded Cables Dozens of different styles Conical ring backshells Tag ring backshells Cable Sealing Band in a Can Backshells Tinel-Lock Backshells Sealtite/Liquidtite Conduit Backshells Band-It Clamping System Conductive epoxy potting for EMI shielding and grounding in tight space applications

Jacketed/Sealed Cable Applications External Wiring Requirements Battlefield electronics Under vehicles Long cable runs connecting field equipment Soldier systems

Overmolded Sealed Cables Ultimate Environmental Protection Use of encapsulating plastic medium to cover backshells, adapters and transitions Effectively isolates conductors from contamination and protects from abrasion Mold geometries for unique applications Can integrate mounting brackets and other hardware right on to the cable assembly Tamper resistant

The Advantage of Overmolding Outstanding environmental protection for harsh and caustic environments compared to unjacketed solutions Polyurethane, Viton, EPDM, Polyamide and Glenair proprietary materials provide robust protection for connectors and cables in harsh/caustic environments Injection molding/transfer molding is a simple, reasonably priced solution to physical protection Design flexibility: from simple point to point, to complex multiple branch assemblies—even fiber-optic and hybrid electrical/optical designs

Top Ten Overmolding Bullet Points Superior, water-proof environmental sealing Robust mechanical protection of the connector Superior mechanical/strain-relief protection of wire/contact terminations. Superior resistance to chemical exposure damage. No induced cold flow stress to wire insulation or terminations compared to cable clamps Superior electrical isolation and insulation Reduced exposure of metal parts to wear damage Flexible routing/cable entry angles Superior performance compared to boots and backshells Tamper proof

Connector Overmold Cross-Section

Typical Overmolded Cable Construction

Old School Overmold Tooling Manual injection tooling serves a broad range of standard connectors. Provides savings to customers and faster time to market. All classes of rectangular connectors Mil-Spec and commercial cylindrical

Production Overmold Systems Numerous other materials, besides Viton, are suitable for injection molded protection of connectors and terminations. Polyamide provides “good” levels of solvent resistant, abrasion resistance and temperature tolerance compared to Viton New equipment and production system adds speed and reliability to catalog point-to-point or pigtail assemblies for the Series 80 “Mighty Mouse”.

Backshell Devices Used in Overmolding Banding backshells, used for shield termination and the attachment of heat shrink boots are also employed in Overmolding. The parts are blast abraded to facilitate overmold material bonding. Design shown at right incorporates a threaded section for easy repair and maintenance or terminations.

Overmolded Cable Applications Preferred technology for fuel cells Advanced F-18 E/F Fuel Cell Assembly with integral fiber optic media F-22 Overmolded Fuel Cell Assembly and Wheel Well Assemblies V-22 Fuel Cell Assembly

Cable Routing and Packaging Capabilities Essentially unlimited range of breakouts and layouts Straight, 90 and 45 degree angular specifications. Existing tooling for many common molding adapters and connectors. Breakout, bulkhead and transition tooling for many configurations

Imbedding PCB’s with Overmolding A Unique Application of Injection Overmolding

Overbraid and Tubular Fabric Braid Strength Plus Chemical and Abrasion Resistance Fabric braid for improved cosmetics, wire management, tensile strength, chemical resistance, abrasion resistance, and flammability reduction

Fabric Braid Material Comparison

Low-End Tubular Fabric Braid Products Polyethylene -54°C to +121°C used for abrasion, cut through and overall protection also very flexible. Polyethylene is very standard and used extensively. Halar (E-CTFE) -73°C to +150°C provides higher temperature and better mechanical toughness. Materials are quite common and highly competitive with “Expando” braid type products.

Less Common Non-Metal Braid Products PEEK 220°C High temp, high performance Teflon (FEP) 200°C chemical and fluid resistant Kevlar Extremely tough Dacron (Polyester) 150°C Nomex

Overbraid and Tubular Fabric Braid For mechanical protection and EMI applications Electrical Continuity of a cable or EMI/RFI shielding is the primary purpose but strain relief, cable strengthening and armoring are also provided. Used for EMI/RFI shielding to prevent “conducted” signals from interfering with sensitive electronics; and to keep intended electrical signals and power from “radiating” and affecting adjacent cables or devices. Standard braiding materials include bare copper, tinplated copper-covered steel, copper plated with tin, nickel or silver; bronze, stainless steel, copper-covered steel, aluminum wire

Overbraid and Tubular Fabric Braid Mechanical Strength and EMI Protection Metal braiding physically protects cable conductors while adding tensile strength and integrity to the assembly. Metallic braids shield cable conductors from line-of-sight EMI penetration or escape, and by taking EMI to ground. Bulk braid size range from 1/32” to 2-1/2” Overbraids up to 3” diameter More than 50 braiders

Ultra-Lightweigth Composite RFI/EMI Braided Shielding Nickel Plated AmberStrand Composite Shielding Offers Unique Solution to Electromagnetic Compatibility Expandable, flexible, high-strength, conductive, elastic composite material Provides abrasion resistance and EMI shielding at a fraction of the weight of metal braid

Lighter Weight and Less Costly Than Braid Foil Shield/Tape Wrap Lighter Weight and Less Costly Than Braid Foil shields: aluminum foil laminated to a Mylar, polyester or polypropylene film. Film gives the shield mechanical strength and added insulation. Provides 100% electrostatic shield protection. Can shield individual pairs of multi-pair cables to reduce crosstalk.

Lighter Weight and Less Costly Than Braid Foil Shield/Tape Wrap Lighter Weight and Less Costly Than Braid Lighter weight, bulk and less costly than spiral or braid shields and are generally more effective than braid shields in RF ranges. Foil shields are often more flexible than braid but have a shorter flex life than spiral or braid. Drain wires often used with foil shields to make termination easier and to ground electrostatic discharges.

Multi-Conductor Cables Critical element of the harness assembly Customer defined: Dimensions Core Type Insulation Conductor, shielding and jacketing RoHS, UL or other Electrical (Voltage, etc) Flame rating Temperature rating

Common Choice for Telephone/Communication Cables Coil Cables Common Choice for Telephone/Communication Cables Specified by “working length,” and “Retracted Length.” Other design variables include: Hand pulled or machine pulled Coil “memory” strength Orientation and length of straight ends

Summary: Application Checklist for Cable and Harness Specification

Application Checklist: Step One: Working Environment Required Information for Fast Design and Delivery Shipboard Aircraft Secure Communications Ground Support Rail/Mass Transit Space Missile Defense Telecommunications Armored Vehicle

Application Checklist: Step Two: Electrical/Optical Requirements Required Information for Fast Design and Delivery Application defined requirements for cable performance may include: Current rating Test voltage Insulation resistance DWV Signal leakage Attenuation Voltage drop Capacitance

Application Checklist: Step Three: EMI Shielding Requirements Required Information for Fast Design and Delivery Customer defined shielding specifications for the cable may include: Shielding effectiveness (dB) Frequency Range (Hertz) EMP TEMPEST

Application Checklist: Step Four: Key Environmental Requirements Required Information for Fast Design and Delivery Customer environmental requirements for the cable may include: Moisture/chemical Protection Low Smoke/Zero Halogen UL94-V0 Flammability NBC/CBRNE Resistance UV Resistance Temperature Resistance Controlling Specification

Application Checklist: Step Five: Key Mechanical Requirements Required Information for Fast Design and Delivery Customer mechanical specifications for the cable may include: Field Reparability Crush/Abrasion Resistance Pull (Tensile) Strength Flexibility/Flex Cycles Minimum bend radius Workmanship standards Strain-relief

Application Checklist: Step Six: Packaging Required Information for Fast Design and Delivery Customer packaging/construction requirements for the cable may include: Critical dimensions/tolerances Required tooling, such as crimp dies, molds and test fixtures Specific cable management and identification choices Approved jacket, boot and dielectric materials Jacket finish Specifications on length of lay in twisted pairs or other cable construction details

Glenair Cable Harness Design and Construction Services

ISO 9001:2008 and AS 9100:2009 Rev C Certified Cable Assembly Factories 100% Vertically Integrated All Key Processes Under Glenair Control ISO 9001:2000 Certified AS9100:2004 Rev. B Certified Certified soldering (NASA STD 8739.3) Source inspection available

Testing Services 100% Testing all Cables Testing on Request Immersion Temperature cycling Post-assembly filter performance Component verification (resistors, diodes, capacitors) X-ray for broken wires, loose strands, mold voids Return loss (back reflection) Interferometer measurement (fiber end face geometry) Contact resistance Weight separation Contact retention Continuity High voltage Insertion loss (Fiber Optic Cable Assemblies)

Cable Harness Application Development The Bid Process During the bid process, Glenair will often add value with superior knowledge of wire and cable layout and assembly, especially in prototypes.

Turnkey cables as a standard catalog offering COTS Cable Assemblies Turnkey cables as a standard catalog offering Point-to-Point cordsets and pigtails available for all Series 80, Series 22, D38999 fiber optic and Micro-D connectors High-speed data transfer cordsets for USB, Ethernet and more using Series 80 Mighty Mouse and other interconnects Standardized part number development Accelerated lead times

Example Custom Cordset (High Speed 1000BASE-T Ethernet)

A Huge Arsenal of Factory Capabilities Summary A Huge Arsenal of Factory Capabilities Wring, connectors, accessories, braiding and sealing all available Catalog standards and thousands of customs Soup-to-nuts cable design, assembly and testing rather than multiple vendor sourcing Engineering staff unparalleled in industry Can draw from a vast reservoir of cable experience