Smurf1 Inhibits Osteoblast Differentiation, Bone Formation, and Glucose Homeostasis through Serine 148  Junko Shimazu, Jianwen Wei, Gerard Karsenty  Cell.

Slides:



Advertisements
Similar presentations
Silencing miR-106b accelerates osteogenesis of mesenchymal stem cells and rescues against glucocorticoid-induced osteoporosis by targeting BMP2  Ke Liu,
Advertisements

Volume 14, Issue 6, Pages (December 2011)
Volume 11, Issue 2, Pages (February 2010)
Volume 11, Issue 2, Pages (April 2015)
Volume 92, Issue 3, Pages (September 2017)
AgRP Neurons Regulate Bone Mass
Volume 121, Issue 1, Pages (April 2005)
A Liver-Bone Endocrine Relay by IGFBP1 Promotes Osteoclastogenesis and Mediates FGF21-Induced Bone Resorption  Xunde Wang, Wei Wei, Jing Y. Krzeszinski,
M. Wang, H. Jin, D. Tang, S. Huang, M.J. Zuscik, D. Chen 
Volume 8, Issue 4, Pages (October 2008)
Volume 7, Issue 5, Pages (November 2010)
Volume 9, Issue 2, Pages (October 2014)
M. Wang, H. Jin, D. Tang, S. Huang, M.J. Zuscik, D. Chen 
Volume 19, Issue 6, Pages (June 2014)
Volume 21, Issue 9, Pages (November 2017)
Volume 16, Issue 10, Pages (September 2016)
Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis
Volume 6, Issue 4, Pages (April 2016)
Volume 13, Issue 6, Pages (June 2011)
Exaggerated inflammatory environment decreases BMP-2/ACS-induced ectopic bone mass in a rat model: implications for clinical use of BMP-2  R.-L. Huang,
Molecular Therapy - Methods & Clinical Development
Volume 11, Issue 2, Pages (February 2010)
Volume 4, Issue 6, Pages (December 2006)
Volume 6, Issue 4, Pages (April 2016)
Volume 142, Issue 2, Pages (July 2010)
The Molecular Clock Mediates Leptin-Regulated Bone Formation
Volume 117, Issue 3, Pages (April 2004)
Thiazolidinediones Regulate Adipose Lineage Dynamics
Volume 8, Issue 5, Pages (May 2005)
Volume 16, Issue 3, Pages (July 2016)
Volume 19, Issue 10, Pages (June 2017)
Volume 6, Issue 6, Pages (June 2016)
Volume 14, Issue 10, Pages (March 2016)
Volume 13, Issue 6, Pages (November 2015)
Volume 11, Issue 1, Pages (July 2012)
Volume 11, Issue 3, Pages (March 2010)
Volume 12, Issue 1, Pages (July 2015)
Volume 14, Issue 4, Pages (October 2011)
Bone: from a reservoir of minerals to a regulator of energy metabolism
Volume 24, Issue 2, Pages (February 2016)
Volume 136, Issue 6, Pages (March 2009)
Promotion Effects of miR-375 on the Osteogenic Differentiation of Human Adipose- Derived Mesenchymal Stem Cells  Si Chen, Yunfei Zheng, Shan Zhang, Lingfei.
Myeloma cell–derived Runx2 promotes myeloma progression in bone
Volume 11, Issue 2, Pages (February 2010)
Volume 21, Issue 9, Pages (November 2017)
Volume 8, Issue 4, Pages (October 2008)
Volume 8, Issue 2, Pages (August 2008)
Volume 23, Issue 6, Pages (June 2016)
Melissa L. Ehlers, Barbara Celona, Brian L. Black  Cell Reports 
Leptin Inhibits Bone Formation through a Hypothalamic Relay
GRM7 Regulates Embryonic Neurogenesis via CREB and YAP
ULK1 Phosphorylates and Regulates Mineralocorticoid Receptor
Volume 21, Issue 6, Pages (November 2017)
Volume 17, Issue 6, Pages (June 2013)
Volume 14, Issue 2, Pages (August 2011)
Reduced bone formation in males and increased bone resorption in females drive bone loss in hemophilia A mice by M. Neale Weitzmann, Susanne Roser-Page,
PexRAP Inhibits PRDM16-Mediated Thermogenic Gene Expression
EBF2 Regulates Osteoblast-Dependent Differentiation of Osteoclasts
Cbx4 Sumoylates Prdm16 to Regulate Adipose Tissue Thermogenesis
mTOR Inhibition Subdues Milk Disorder Caused by Maternal VLDLR Loss
Molecular Therapy - Nucleic Acids
Arisa Hirano, Daniel Braas, Ying-Hui Fu, Louis J. Ptáček  Cell Reports 
Slc7a5 in osteoblasts is dispensable for bone formation and bone homeostasis in vivo. Slc7a5 in osteoblasts is dispensable for bone formation and bone.
Insulin resistance and hepatic steatosis in ASKO mice.
Expression of PKCδ in islets and other tissues of control and PKCδKN-overexpressing mice. Expression of PKCδ in islets and other tissues of control and.
Volume 11, Issue 2, Pages (February 2010)
Volume 10, Issue 4, Pages (April 2017)
Volume 11, Pages (January 2019)
Adipose Fatty Acid Oxidation Is Required for Thermogenesis and Potentiates Oxidative Stress-Induced Inflammation  Jieun Lee, Jessica M. Ellis, Michael J.
ASXL2 Regulates Glucose, Lipid, and Skeletal Homeostasis
Presentation transcript:

Smurf1 Inhibits Osteoblast Differentiation, Bone Formation, and Glucose Homeostasis through Serine 148  Junko Shimazu, Jianwen Wei, Gerard Karsenty  Cell Reports  Volume 15, Issue 1, Pages 27-35 (April 2016) DOI: 10.1016/j.celrep.2016.03.003 Copyright © 2016 The Authors Terms and Conditions

Cell Reports 2016 15, 27-35DOI: (10.1016/j.celrep.2016.03.003) Copyright © 2016 The Authors Terms and Conditions

Figure 1 Regulation of Osteoblast Differentiation by Smurf1 In Vivo (A and B) Alcian blue/alizarin red staining of (A) clavicles and (B) skulls of P4 and P10 WT and Smurf1−/− mice, respectively. Scale bar, 1 mm. (C) Opening of sagittal sutures in P10 Smurf1−/− and WT mice. (D) In situ hybridization analysis of Bsp expression in calvarial bones of E14.5 Smurf1−/− and WT embryos. Scale bar, 100 μm. (E and F) qPCR analysis of (E) Ocn and (F) Bsp expression in femurs of E14.5 WT and Smurf1−/− embryos (n = 5). (G) In situ hybridization analysis of Ocn, Bsp, and α1(I)Col expression in femurs of E14.5 Smurf1−/− and WT embryos. Scale bar, 100 μm. (H) Runx2 accumulation in skulls of P10 WT and Smurf1−/− mice. (I) Expression of Runx2 in the femurs of P10 WT and Smurf1−/− mice (n = 6). n.s., not significant. Error bars indicate mean ± SEM. ∗p ≤ 0.05; #p ≤ 0.005 (compared to control), from Student’s t tests. Cell Reports 2016 15, 27-35DOI: (10.1016/j.celrep.2016.03.003) Copyright © 2016 The Authors Terms and Conditions

Figure 2 Phosphorylation of Smurf1 at S148 Is Necessary for Smurf1 Ability to Regulate Osteoblast Differentiation In Vivo (A) Western blot analysis of S148 phosphorylation in Smurf1 in WT and Smurf1ki/ki osteoblasts. (B and C) Alcian blue/alizarin red staining of (B) clavicles and (C) skulls of P4 and P10 WT and Smurf1ki/ki mice, respectively. Scale bar, 1 mm. (D) Opening of sagittal sutures in P10 Smurf1ki/ki and WT mice. (E and F) In situ hybridization analysis of (E) Bsp in calvarial bones and (F) Ocn, Bsp, and α1(I)Col expression in femurs of E14.5 WT and Smurf1ki/ki embryos. Scale bar, 100 μm. (G and H) qPCR analysis of (G) Ocn and (H) Bsp expression in femurs of E14.5 WT and Smurf1ki/ki embryos (n = 4–5). (I–L) Bone histomorphometric analysis of L3 and L4 vertebrae of 2-month-old WT and Smurf1ki/ki female mice (n = 7). (I) Mineralized bone volume per total volume (BV/TV). (J) Trabecular number (Tb.N). (K) Osteoblast number per tissue area (N.Ob/T.Ar). (L) The annual fractional volume of trabecular bone formed per unit trabecular surface area (BFR/BS). (M) Runx2 accumulation in the skulls of P10 WT and Smurf1ki/ki mice. (N) GST pull-down assay showing interaction of Flag-Runx2 with GST-Smurf1 WT or S148A after phosphorylation by AMPK. (O) Effect of the forced expression of WT or S148A Smurf1 on the accumulation of Runx2 in COS-7 cells. Error bars indicate mean ± SEM. ∗p ≤ 0.05; #p ≤ 0.005 (compared to control), from Student’s t tests. Cell Reports 2016 15, 27-35DOI: (10.1016/j.celrep.2016.03.003) Copyright © 2016 The Authors Terms and Conditions

Figure 3 Smurf1 Phosphorylation at S148 Is Necessary to Regulate RUNX2 In Vivo (A) Alcian blue/alizarin red staining of skulls of P10 Runx2+/− and Runx2+/−;Smurf1ki/ki mice. Scale bar, 1 mm. (B) Area of the opening of skulls in P10 Runx2+/−;Smurf1ki/ki and Runx2+/− mice. (C) Alcian blue/alizarin red staining of clavicles of P10 Runx2+/− and Runx2+/−;Smurf1ki/ki mice. Scale bar, 1 mm. (D) Runx2 accumulation in skulls of P10 Runx2+/−, Runx2+/−;Smurf1ki/ki, and WT skulls. (E) In situ hybridization analysis of Ocn and α1(I)Col expression in E15.5 WT, Runx2+/−, and Runx2+/−;Smurf1ki/ki femurs. Scale bar, 100 μm. (F and G) qPCR analysis of (F) Ocn and (G) Bsp expression in femurs of P10 WT, Runx2+/−, and Runx2+/−;Smurf1ki/ki mice (n = 3–4). Error bars indicate mean ± SEM. ∗p ≤ 0.05; #p ≤ 0.005 (compared to control), from Student’s t tests. Cell Reports 2016 15, 27-35DOI: (10.1016/j.celrep.2016.03.003) Copyright © 2016 The Authors Terms and Conditions

Figure 4 Phosphorylation of SMURF1 at S148 Is Necessary for Smurf1 Activity to Regulate InsR Degradation (A and B) Blood glucose levels in (A) P10 WT and Smurf1−/− mice and (B) P10 WT and Smurf1ki/ki mice (n = 9–13 per group). (C) Circulating insulin levels in P10 WT and Smurf1ki/ki mice (n = 6). BDL, below detection limit. (D) GST pull-down assay showing interaction of InsR with GST-Smurf1 WT or GST-Smurf1 S148A after AMPK phosphorylation. (E) Effect of the overexpression of WT or S148A Smurf1 on the accumulation of InsR in COS-7 cells. (F) Accumulation of the InsR in skull, liver, WAT, and muscle of P10 WT, Smurf1−/−, and Smurf1ki/ki mice. (G) Expression of Smurf1 in liver, WAT, muscle, and skull of P10 WT mice. (H and I) Expression of (H) Opg and (I) Rankl in the femurs of P10 WT and Smurf1ki/ki mice (n = 8). n.s., not significant. (J) Osteoclast number (N.Oc)/bone perimeter (B.Pm) (/mm) in 2-month-old WT and Smurf1ki/ki female mice (n = 7). (K) Serum levels of undercarboxylated osteocalcin in 2-month-old WT and Smurf1ki/ki mice (n = 6). (L) Blood glucose levels in P10 WT, Smurf1ki/ki, and Ocn+/−;Smurf1ki/ki mice (n = 9). Error bars indicate mean ± SEM. ∗p ≤ 0.05; #p ≤ 0.005 (compared to control), from Student’s t tests. Cell Reports 2016 15, 27-35DOI: (10.1016/j.celrep.2016.03.003) Copyright © 2016 The Authors Terms and Conditions