All solutions of a linear equation are on its graph

Slides:



Advertisements
Similar presentations
6-1 Solving Systems by Graphing Warm Up Evaluate each expression for x = 1 and y = –3. 1. x – 4y 2. –2x + y Write each expression in slope- intercept form.
Advertisements

5-1 Solving Systems by Graphing
Solving Systems by Graphing
SOLUTION EXAMPLE 1 A linear system with no solution Show that the linear system has no solution. 3x + 2y = 10 Equation 1 3x + 2y = 2 Equation 2 Graph the.
EXAMPLE 3 Write an equation for a function
7 = 7 SOLUTION EXAMPLE 1 Check the intersection point Use the graph to solve the system. Then check your solution algebraically. x + 2y = 7 Equation 1.
Warm Up Evaluate each expression for x = 1 and y =–3.
Solving Systems by Graphing
Solving Systems by Graphing
WARM UP LINEAR EQUATIONS Solve the equation (Lesson 3.1, 3.4) 1.5(2x + 4) = 2(10 + 5x) 2.2x + 6(x + 1) = -2 3.
3.1: Solving Linear Systems by Graphing Group 4.  Get two variables, (x,y), to correctly come out of two equations  ax+by=c  dx+ey=f  Check whether.
Preview Warm Up California Standards Lesson Presentation.
Warm Up Evaluate each expression for x = 1 and y =–3.
Learning Goal Identify solutions of linear equations in two variables.
Warm Up Evaluate each expression for x = 1 and y =–3. 1. x – 4y 2. –2x + y Write each expression in slope-intercept form, then then graph. 3. y – x = 1.
EXAMPLE 4 Solve a multi-step problem A business rents in-line skates and bicycles. During one day, the business has a total of 25 rentals and collects.
Topics: Topic 1: Solving Linear Equations Topic 2: Solving Quadratic Equations Topic 3: Solving Proportions involving linear and quadratic functions. Topic.
Topic: U4L2 Solving Nonlinear Systems of Equations EQ: How can I solve a system of equations if one or more of the equations does not represent a line?
A system of two linear equations in two variables represents two lines. The lines can be parallel, intersecting, or coinciding. Lines that coincide are.
Solving Systems of Equations Graphing Linear Inequalities.
EXAMPLE 1 Solve a system graphically Graph the linear system and estimate the solution. Then check the solution algebraically. 4x + y = 8 2x – 3y = 18.
5-1 Solving Systems by Graphing. Geogebra Solving a System by Graphing Solving a System by Graphing (2)
Solving Systems by Graphing
Solving Systems by Graphing
Lesson 4-1 Solving linear system of equations by graphing
Solving Systems by Graphing
Warm Up Evaluate each expression for x = 1 and y =–3.
Warm Up Substitute the given values of m, x, and y into the equation y = mx + b and solve for b. 1. m = 2, x = 3, and y = 0 Solve each equation for y.
Solving Systems by Graphing
Solving Systems by Graphing
Solving Systems by Graphing
Warm Up Evaluate each expression for x = 1 and y =–3.
Solving Systems by Graphing
6.1 Solving Systems by Graphing
Solving Systems by Graphing
Warm Up Evaluate each expression for x = 1 and y =–3.
Lesson 5-1 Solving Systems by Graphing
Solve a system of linear equation in two variables
The equation of a line can be written in many different forms
Solving Systems by Graphing
Warm Up Evaluate each expression for x = 1 and y =–3.
Systems of equations.
Warm Up Evaluate each expression for x = 1 and y =–3.
Solving Systems by Graphing
Solving Systems by Graphing
Solving Systems by Graphing
Solving Systems of Equations by Graphing
Lesson Objectives: I will be able to …
Solving Systems by Graphing
Warm Up Evaluate each expression for x = 1 and y =–3.
Objectives Graph lines and write their equations in slope-intercept and point-slope form. Classify lines as parallel, intersecting, or coinciding.
Solving Systems by Graphing
Solving Systems by Graphing
Indicator 16 System of Equations.
Solving Systems by Graphing
Tie to LO Activating Prior Knowledge – 1. y – x = x + 3y = 6
Objectives Identify solutions of linear equations in two variables.
5.1 Solving Systems of Equations by Graphing
Solving Systems by Graphing
Solving Systems by Graphing
Solving Systems by Graphing
What is the difference between simplifying and solving?
Systems of Equations Solve by Graphing.
Solving Systems by Graphing
Tie to LO Activating Prior Knowledge – 1. y – 2x = x + 3y = 6
Solving Systems by Graphing
Solving Systems by Graphing
Solving Systems by Graphing
Tell whether the ordered pair is a solution of the equation.
Solving Linear Systems by Graphing
Presentation transcript:

All solutions of a linear equation are on its graph All solutions of a linear equation are on its graph. To find a solution of a system of linear equations, you need a point that each line has in common. In other words, you need their point of intersection. y = 2x – 1 y = –x + 5 The point (2, 3) is where the two lines intersect and is a solution of both equations, so (2, 3) is the solution of the systems.

Sometimes it is difficult to tell exactly where the lines cross when you solve by graphing. It is good to confirm your answer by substituting it into both equations. Helpful Hint

Example 1 Tell whether the ordered pair is a solution of the given system. (5, 2); 3x – y = 13 2 – 2 0 0 0  3(5) – 2 13 15 – 2 13 13 13  3x – y 13 Substitute 5 for x and 2 for y in each equation in the system. The ordered pair (5, 2) makes both equations true. (5, 2) is the solution of the system.

  Example 2 Solve the system by graphing. Check your answer. y = x Graph the system. y = –2x – 3 The solution appears to be at (–1, –1). Check Substitute (–1, –1) into the system. y = x y = –2x – 3 (–1) –2(–1) –3 –1 2 – 3 –1 – 1  y = x (–1) (–1) –1 –1  • (–1, –1) y = –2x – 3 (–1, –1) is the solution of the system.

  Example 3 Solve the system by graphing. Check your answer. y = –2x – 1 Graph the system. y = x + 5 The solution appears to be (–2, 3). Check Substitute (–2, 3) into the system. y = x + 5 y = –2x – 1 y = –2x – 1 3 –2(–2) – 1 3 4 – 1 3 3  y = x + 5 3 –2 + 5 3 3  (–2, 3) is the solution of the system.

  Example 4 Solve the system by graphing. Check your answer. 2x + y = 4 2x + y = 4 Check Substitute (3, –2) into the system. –2 (3) – 3 –2 1 – 3 –2 –2  2x + y = 4 2(3) + (–2) 4 6 – 2 4 4 4  The solution is (3, –2).

Example 5 Video club A charges $10 for membership and $3 per movie rental. Video club B charges $15 for membership and $2 per movie rental. For how many movie rentals will the cost be the same at both video clubs? What is that cost?

Example 5 Continued Solve 3 Graph y = 3x + 10 and y = 2x + 15. The lines appear to intersect at (5, 25). So, the cost will be the same for 5 rentals and the total cost will be $25.

  Example 5 Continued Look Back 4 Check (5, 25) using both equations. Number of movie rentals for Club A to reach $25: 3(5) + 10 = 15 + 10 = 25  Number of movie rentals for Club B to reach $25: 2(5) + 15 = 10 + 15 = 25 