The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow  A. Shibakawa, M.D., Ph.D., K. Yudoh,

Slides:



Advertisements
Similar presentations
Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model  M. Saito, T.
Advertisements

Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells  R. Kuroda, M.D.,
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
Intra-articular injection of the cyclooxygenase-2 inhibitor parecoxib attenuates osteoarthritis progression in anterior cruciate ligament-transected knee.
A. Watanabe, C. Boesch, S.E. Anderson, W. Brehm, P. Mainil Varlet 
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Loss of Vhl in cartilage accelerated the progression of age-associated and surgically induced murine osteoarthritis  T. Weng, Y. Xie, L. Yi, J. Huang,
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
Characterization of cells from pannus-like tissue over articular cartilage of advanced osteoarthritis  G.-H Yuan, M.D., Ph.D., M Tanaka, V.M.D., K Masuko-Hongo,
Histopathological subgroups in knee osteoarthritis
Bone turnover and articular cartilage differences localized to subchondral cysts in knees with advanced osteoarthritis  Y. Chen, T. Wang, M. Guan, W.
Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage  M. Rutgers, M.J.P. van Pelt, W.J.A. Dhert, L.B.
Chitosan–glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects 
R.E. Fransès, D.F. McWilliams, P.I. Mapp, D.A. Walsh 
Establishment of a rabbit model to study the influence of advanced glycation end products accumulation on osteoarthritis and the protective effect of.
An in vivo cross-linkable hyaluronan gel with inherent anti-inflammatory properties reduces OA cartilage destruction in female mice subjected to cruciate.
ADAMTS5−/− mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage.
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography  D.D. McErlain, M.Sc., C.T.G. Appleton,
NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co- glycolic acid composite improves repair of large osteochondral defects.
Angiogenesis in two animal models of osteoarthritis
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
Positron emission tomography with 18F-FDG in osteoarthritic knee
The short-term therapeutic effect of recombinant human bone morphogenetic protein-2 on collagenase-induced lumbar facet joint osteoarthritis in rats 
PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage  S. Otsuka, M.D., T. Aoyama, M.D., Ph.D.,
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rabbit  S. Laverty, C.A. Girard, J.M. Williams,
Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model  M. Saito, T.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells  R. Kuroda, M.D.,
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
Multicolor flow cytometry-based cellular phenotyping identifies osteoprogenitors and inflammatory cells in the osteoarthritic subchondral bone marrow.
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the rat  N. Gerwin, A.M. Bendele, S. Glasson,
A. Ludin, J.J. Sela, A. Schroeder, Y. Samuni, D.W. Nitzan, G. Amir 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
Characterization of pro-apoptotic and matrix-degradative gene expression following induction of osteoarthritis in mature and aged rabbits  Dr. C.M. Robertson,
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change  Y. Chen,
Real-time assessment of bone metabolism in small animal models for osteoarthritis using multi pinhole-SPECT/CT  T.M. Piscaer, M. Sandker, O.P. van der.
A.C. Dang, M.D., A.P. Warren, M.D., H.T. Kim, M.D., Ph.D. 
Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle  Y.-S.
Chondroprotective activity of N-acetyl phenylalanine glucosamine derivative on knee joint structure and inflammation in a murine model of osteoarthritis 
On new bone formation in the pre-osteoarthritic joint
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
The validity of in vivo ultrasonographic grading of osteoarthritic femoral condylar cartilage: a comparison with in vitro ultrasonographic and histologic.
Loss of Frzb and Sfrp1 differentially affects joint homeostasis in instability-induced osteoarthritis  S. Thysen, F.P. Luyten, R.J. Lories  Osteoarthritis.
Bone–cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies  X.L. Yuan, H.Y. Meng, Y.C. Wang, J. Peng,
An experimental study on costal osteochondral graft
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
Chondrocytes attach to hyaline or calcified cartilage and bone1 1 Funding Support: This work was supported by Genzyme Biosurgery, Boston, USA and CIHR. 
The degeneration and destruction of femoral articular cartilage shows a greater degree of deterioration than that of the tibial and patellar articular.
Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced.
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
F.W. Roemer, M.D.  Osteoarthritis and Cartilage 
C. E. Berger, M. D. , A. Kröner, M. D. , K. H. Kristen, M. D. , M
The validity of in vitro ultrasonographic grading of osteoarthritic femoral condylar cartilage – a comparison with histologic grading  C.-Y. Tsai, M.D.,
A pilot study of the reproducibility and validity of measuring knee subchondral bone density in the tibia  D. Dore, BBiotech.(Hons.), C. Ding, M.D., G.
Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage  I. Holloway, M. Kayser, D.A. Lee, D.L. Bader,
Lead accumulation in tidemark of articular cartilage
Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5  M. Harada, M.D., M. Takahara, M.D., Ph.D.,
Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen.
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Familial osteochondritis dissecans associated with early osteoarthritis and disproportionate short stature  E.-L. Stattin, M.D., Y. Tegner, M.D., Ph.D.,
Lymphatic vessels in osteoarthritic human knees
Presentation transcript:

The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow  A. Shibakawa, M.D., Ph.D., K. Yudoh, M.D., Ph.D., K. Masuko-Hongo, M.D., Ph.D., T. Kato, M.D., Ph.D., K. Nishioka, M.D., Ph.D., H. Nakamura, M.D., Ph.D.  Osteoarthritis and Cartilage  Volume 13, Issue 8, Pages 679-687 (August 2005) DOI: 10.1016/j.joca.2005.04.010 Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 1 Outline of the knee joint (A) and topographic location of the osteochondral blocks from representative osteoarthritic (B) and non-arthritic joint (C). Blocks were resected along the dotted line and each section was prepared from each block. MFC: medial femoral condyle, LFC: lateral femoral condyle, MTC: medial tibial condyle, LTC: lateral tibial condyle, PFJ: patellar femoral joint, P: patella. Osteoarthritis and Cartilage 2005 13, 679-687DOI: (10.1016/j.joca.2005.04.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 2 Histological findings of subchondral plate with HE staining. (A) Grade 0: subchondral plate with no invasion of bone marrow. (B) Grade I: subchondral bone resorption pit formation is limited within the calcified cartilage, (C) Grade II: bone marrow tissue infiltrate into the articular cartilage beyond the tidemark. Arrow: tidemark, AC: articular cartilage, CC: calcified cartilage, SB: subchondral bone, bar=100μm. Osteoarthritis and Cartilage 2005 13, 679-687DOI: (10.1016/j.joca.2005.04.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 3 The density of grade I and grade II subchondral bone resorption pit in OA and control. The density of the pits is expressed as the number of pits per 10mm of the subchondral bone. Values are the mean±SD. *P<0.05. Osteoarthritis and Cartilage 2005 13, 679-687DOI: (10.1016/j.joca.2005.04.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 4 The density of subchondral bone resorption pits in the medial and the lateral condyles. Values are the mean±SD. Med: medial femoral condyle and medial tibial condyle, Lat: lateral femoral condyle and lateral tibial condyle, *P<0.05. Osteoarthritis and Cartilage 2005 13, 679-687DOI: (10.1016/j.joca.2005.04.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 5 Correlation of subchondral bone resorption pit and the degradation of articular cartilage. (A) The mean mMankin score in articular cartilage overlying subchondral bone with (+) or without (−) grade II subchondral bone resorption pits. **P<0.01. (B) Correlation of the number of pits and mMankin score overlying the pits (r=0.459, n=112, P<0.001). (C–E) Representative view stained by safranin-O, (C) no pit formation with mMankin score=2, (D) two-pit formation with mMankin score=4, (E) multiple pit formation with mMankin score=7. Arrowhead: subchondral bone resorption pit, bar=1000μm. Osteoarthritis and Cartilage 2005 13, 679-687DOI: (10.1016/j.joca.2005.04.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 6 Depletion of proteoglycan by subchondral bone resorption pit in OA. Safranin-O staining is positive in articular cartilage in the grade 0 (A) and the grade I (B) pits. (C) Depletion of safranin-O staining in articular cartilage around the tip of grade II pit. Arrow: tidemark, bar=100μm. Osteoarthritis and Cartilage 2005 13, 679-687DOI: (10.1016/j.joca.2005.04.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 7 Osteoclast-like cells attached to the inner surface of the pit and seemed to absorb calcified cartilage as well as articular cartilage. Serial sections showed the presence of multinucleated cells positive for TRAP (A) and VNR-α chain (B) in the grade II pit. AC: articular cartilage, CC: calcified cartilage, BM: bone marrow, arrow: tidemark, bar=100μm. Osteoarthritis and Cartilage 2005 13, 679-687DOI: (10.1016/j.joca.2005.04.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 8 Immunohistochemistry of the subchondral bone resorption pit for MMP-1 (A,D), MMP-3 (B,E) and MMP-13 (C,F) in the grade II (A–C) and the grade I (D–F) pit. Polynuclear giant cells or mononuclear cells expressed MMPs in their cytoplasm. AC: articular cartilage, CC: calcified cartilage, SB: subchondral bone, arrow: tidemark, bar=100μm. Osteoarthritis and Cartilage 2005 13, 679-687DOI: (10.1016/j.joca.2005.04.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 9 Co-expression of MMP-13 (A) and VNR-α chain (B) in polynuclear cells in the grade II subchondral bone resorption pit. AC: articular cartilage, arrowhead: positive cells, bar=50μm. Osteoarthritis and Cartilage 2005 13, 679-687DOI: (10.1016/j.joca.2005.04.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions

Fig. 10 Some pits permitted vimentin positive cells to invade (A) and other pits were lined with BMP positive cells (B). There were some pits that were surrounded by mature lamellar bone (HE staining) (C). Bony indentation surrounded by mature lamellar bone (C) was found, which made the subchondral plate irregular (D). (A,B) Immunohistochemistry, (C,D) HE staining. Arrow: tidemark, bar=100μm. Osteoarthritis and Cartilage 2005 13, 679-687DOI: (10.1016/j.joca.2005.04.010) Copyright © 2005 OsteoArthritis Research Society International Terms and Conditions