Find: hL [m] rectangular d channel b b=3 [m]

Slides:



Advertisements
Similar presentations
Chapter 13: Momentum Principles in Open-Channel
Advertisements

Solve a multi-step problem
Pertemuan Open Channel 2. Bina Nusantara VARIED FLOW IN OPEN CHANNELS.
Chapter 7 continued Open Channel Flow
TRIGONOMETRIC EQUATIONS Solving a Trigonometric Equation : 1. Try to reduce the equation to one involving a single function 2. Solve the equation using.
Holt Algebra Solving Radical Equations Warm Up(Add to Hw) Solve each equation. 1. 3x +5 = x + 1 = 2x – (x + 7)(x – 4) = 0 5. x 2.
Factoring to Solve Quadratic Equations – Solving Quadratic Equations by Factoring A quadratic equation is written in the Standard Form, where a,
CE 3372 Water Systems Design
Using the Quadratic Formula
CE 356 Elements of Hydraulic Engineering
SECTION 9-3 : SOLVING QUADRATIC EQUATIONS
Find: max L [ft] 470 1,330 1,780 2,220 Pmin=50 [psi] hP=130 [ft] tank
Find: y1 Q=400 [gpm] 44 Sand y2 y1 r1 r2 unconfined Q
Find: QC [L/s] ,400 Δh=20 [m] Tank pipe A 1 pipe B Tank 2
Find: DOB mg L A B C chloride= Stream A C Q [m3/s]
Find: Q gal min 1,600 1,800 2,000 2,200 Δh pipe entrance fresh water h
Find: Phome [psi] 40 C) 60 B) 50 D) 70 ft s v=5 C=100
Find: u [kPa] at point B D C B A Water Sand Silt Aquifer x
Find: sc 0.7% 1.1% 1.5% 1.9% d b ft3 Q=210 s b=12 [ft] n=0.025
Find: c(x,t) [mg/L] of chloride
Find: P4,gauge [lb/in2] Liquid S.G. P1,abs=14.7 [lb/in2] A 1.20
Find: QBE gal min 2, A F B Pipe AB BC CD DE EF FA BE C
Find: the soil classification
Find: f(4[hr]) [cm/hr] saturation 0% 100%
Find: 30 C mg L θd=1.047 Kd,20 C=0.11 [day-1]
Find: ρc [in] from load after 2 years
Find: minimum # of stages
Find: FCD [kN] 25.6 (tension) 25.6 (compression) 26.3 (tension)
Find: Qpeak [cfs] Time Unit Rainfall Infiltration
Find: 4-hr Unit Hydrograph
P4 Day 1 Section P4.
Find: V [ft/s] xL xR b b=5 [ft] xL=3 xR=3 ft3 s
Systems of Linear and Quadratic Equations
Find: R’ [ft] A V’ V CAB=1,000 [ft] LV’V=20 [ft] I=60 B’ B
Find: min D [in] = P=30,000 people 18+P/1000 PF= 4+P/1000
γdry=110 Find: VTotal[ft3] of borrowed soil Fill VT=10,000 [ft3]
Find: Dc mg L at 20 C [mg/L] Water Body Q [m3/s] T [C] BOD5 DO
Find: Mmax [lb*ft] in AB
Find: max d [ft] Qin d ψ = 0.1 [ft] Δθ = 0.3 time inflow
Find: the soil classification
Find: Qp [cfs] tc Area C [acre] [min] Area Area B A
Find: AreaABC [ft2] C A B C’ 43,560 44,600 44,630 45,000
3.2 Part B Notes Motion graphs.
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
Find: FR [kN] door 0.4 [m] 0.4 [m] door FR 0.3 [m] hinge wall
Find: Omax [cfs] Given Data 29,000 33,000 37,000 41,000 inflow outflow
Find: Qp [cfs] shed area tc C 1,050 1,200 1,300 1,450 A B C Q [acre]
Find: Bearing Capacity, qult [lb/ft2]
Find: Daily Pumping Cost [$]
Find: hmax [m] L hmax h1 h2 L = 525 [m]
Find: Mg S O4 mg (hypothetical) L Ca2+ SO4 Mg2+ Na+ - HCO3 Cl- Ion C
Find: % of sand in soil sieve # mass retained [g] 60% 70% 80% D) 90% 4
Find: SG air Wcyl,A=350 [N] fluid Wcyl,S=200 [N] r h
Find: LBC [ft] A Ax,y= ( [ft], [ft])
Find: Q [L/s] L h1 h1 = 225 [m] h2 h2 = 175 [m] Q
Find: cV [in2/min] Deformation Data C) 0.03 D) 0.04 Time
Find: L [ft] L L d A) 25 B) 144 C) 322 D) 864 T = 13 [s] d = 20 [ft]
Find: wc wdish=50.00[g] wdish+wet soil=58.15[g]
Find: Vwater[gal] you need to add
Find: αNAB N STAB=7+82 B STAA= D=3 20’ 00” A O o o
Find: Time [yr] for 90% consolidation to occur
Find: hT Section Section
Find: Saturation, S 11% d=2.8 [in] 17% 23% 83% L=5.5 [in] clay
Find: STAC B C O A IAB R STAA= IAB=60
Find: LL laboratory data: # of turns Wdish [g] Wdish+wet soil [g]
Find: z [ft] z 5 8 C) 10 D) 12 Q pump 3 [ft] water sand L=400 [ft]
Find: CC Lab Test Data e C) 0.38 D) 0.50 Load [kPa] 0.919
Find: Pe [in] N P=6 [in] Ia=0.20*S Land use % Area
Find: M [k*ft] at L/2 A B w 5 w=2 [k/ft] 8 21 L=10 [ft] 33 L
Section P4.
Presentation transcript:

Find: hL [m] 0.63 0.84 1.02 1.31 rectangular d channel b b=3 [m] hydraulic jump Find the headloss, in meters, across the hydraulic jump. [pause] In this problem, --- d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] 0.63 0.84 1.02 1.31 rectangular d channel b b=3 [m] hydraulic jump a hydraulic jump occurs in a rectangular channel. d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] 0.63 0.84 1.02 1.31 rectangular d channel b b=3 [m] hydraulic jump The channel width is provided, as well as the initial and final water depths. [pause] d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] + + ρ*g P y hT= v2 d 2*g b b=3 [m] hydraulic jump d2 Q d1 Bernoulli’s equation states the total head equals, --- d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] + + ρ*g P y hT= v2 d 2*g b pressure b=3 [m] head hydraulic jump the pressure head, --- d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] + + ρ*g P y hT= v2 d 2*g b pressure b=3 [m] head hydraulic elevation head jump plus the elevation head, --- d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] + + ρ*g P y hT= v2 d 2*g b pressure pressure velocity b=3 [m] head head head hydraulic elevation head jump plus the velocity head. d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] + + ρ*g P y hT= v2 d 2*g b pressure pressure velocity b=3 [m] head head head hydraulic elevation head jump Since open channel flow is not pressurized flow, --- d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] + + ρ*g P y hT= v2 d 2*g b pressure pressure velocity P v2 + y + hT= d ρ*g 2*g b pressure pressure velocity b=3 [m] head head head hydraulic elevation head jump the pressure head for this problem, is zero, and the equation simplifies. d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] + + + ρ*g P y hT= hT= y v2 d 2*g v2 b 2*g b=3 [m] P v2 + y + hT= d ρ*g 2*g v2 b hT= y + 2*g b=3 [m] hydraulic jump The headloss across the hydraulic jump, is equal to --- d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] + + + ρ*g P y hT= hT= y hL= h1 – h2 v2 d 2*g v2 b 2*g P v2 + y + hT= d ρ*g 2*g v2 b hT= y + 2*g b=3 [m] hydraulic hL= h1 – h2 jump the initial total head, minus the final total head, which can be written out in terms of the --- d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] + + + + - + ρ*g P y hT= hT= y hL= h1 – h2 hL= y1 y2 v2 d P v2 + y + hT= d ρ*g 2*g v2 b hT= y + 2*g b=3 [m] hydraulic hL= h1 – h2 jump initial and final elevation and velocity heads. [pause] The elevation heads, v1 v2 d2 2 2 hL= y1 + - y2 + Q 2*g 2*g d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] + + + + - + ρ*g P y hT= hT= y hL= h1 – h2 hL= y1 y2 v2 d P v2 + y + hT= d ρ*g 2*g v2 b hT= y + 2*g b=3 [m] hydraulic hL= h1 – h2 jump y1 and y2, are simply the water depths given in the problem statement, d1 and d2. v1 v2 d2 2 2 hL= y1 + - y2 + Q 2*g 2*g d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] + + + + - + ρ*g P y hT= hT= y hL= h1 – h2 hL= y1 y2 v2 d P v2 + y + hT= d ρ*g 2*g v2 b hT= y + 2*g b=3 [m] hydraulic hL= h1 – h2 jump The value of g, is a constant, but we don’t know the velocities, --- v1 v2 d2 2 hL= y1 + - 2 y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

Find: hL [m] + + + + - + ρ*g ? ? P y hT= hT= y hL= h1 – h2 hL= y1 y2 P v2 + y + hT= d ρ*g 2*g v2 b hT= y + 2*g b=3 [m] ? ? hydraulic hL= h1 – h2 jump v1 and v2. [pause] Velocities 1 and 2 equal, --- v1 v2 d2 2 2 hL= y1 + - y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

Find: hL [m] + - + ? ? v1= v2= hL= y1 y2 Q A1 d Q A2 b b=3 [m] hydraulic jump the flowrate, divided by areas 1 and 2, respectively, --- v1 v2 d2 2 hL= y1 + - 2 y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

Find: hL [m] + - + ? ? v1= = v2= = hL= y1 y2 Q Q A1 b*d1 d Q Q A2 b*d2 b=3 [m] ? ? hydraulic jump where the areas 1 and 2, equal the channel base times the depths 1 and 2, respectively. v1 v2 d2 2 2 hL= y1 + - y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

Find: hL [m] + - + ? ? v1= = v2= = hL= y1 y2 Q Q A1 b*d1 d Q Q A2 b*d2 b=3 [m] ? ? hydraulic jump Since we already know the base width and the depths, we need to solve for the flowrate, --- v1 v2 d2 2 2 hL= y1 + - y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

Find: hL [m] + - + ? ? ? ? v1= = v2= = hL= y1 y2 Q Q A1 b*d1 d Q Q A2 b=3 [m] ? ? hydraulic jump Q. [pause] An equation which relates the conjugate depths across --- v1 v2 d2 2 hL= y1 + - 2 y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

Find: hL [m] ? ? v1= = v2= = d2 1 = 1 + 8 * Fr1 -1 d1 2 Q Q A1 b*d1 d b=3 [m] d2 1 = * 1 + 8 * Fr1 -1 2 hydraulic d1 2 jump a hydraulic jump, is, d2 divided by d1, equals, 1/2 times the quantity, the square root of 1 plus eight times the upstream froude number squared, minus 1. For a rectangular channel, the Froude number equals --- d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] ? v1= = v v2= = Fr= d2 1 = 1 + 8 * Fr1 -1 d1 2 Q Q A1 b*d1 d Q Q v v2= = Fr= A2 b*d2 g*d b b=3 [m] d2 1 = * 1 + 8 * Fr1 -1 2 hydraulic d1 2 jump the velocity, divided by the square root of the gravitational acceleration times the depth, where the velocity equals, --- d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] ? v1= = v= v v2= = Fr= d2 1 = 1 + 8 * Fr1 -1 d1 2 Q Q Q A1 b*d1 A d Q Q v v2= = Fr= A2 b*d2 g*d b b=3 [m] d2 1 = * 1 + 8 * Fr1 -1 2 hydraulic d1 2 jump the flowrate, divided by the area, and the area equals, --- d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] ? v1= = v= v v2= = Fr= d2 1 = 1 + 8 * Fr1 -1 d1 2 A=b*d Q g*d b b=3 [m] d2 1 = * 1 + 8 * Fr1 -1 2 hydraulic d1 2 jump the base width times the depth. [pause] After these substitutions are made, the hydraulic jump equation --- d2 Q d1 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] ? v1= = v= v v2= = Fr= d2 1 = 1 + 8 * Fr1 -1 d1 2 d2 1 = A=b*d Q Q ? Q v1= = v= A1 b*d1 A d Q Q v v2= = Fr= A2 b*d2 g*d b b=3 [m] d2 1 = * 1 + 8 * Fr1 -1 2 hydraulic d1 2 jump is effectively 1 equation and 1 unknown, and that unknown value is our flowrate, Q. [pause] After a few lines of algebra, --- d2 d2 1 Q 2 Q = 1 + 8 * -1 d1 * d1 2 g*b2*d1 3 d1=0.5 [m] d2=2.0 [m]

Find: hL [m] ? +1 -1 v1= = v= v v2= = Fr= d2 1 = 1 + 8 * Fr1 -1 d1 2 A=b*d Q Q ? Q v1= = v= A1 b*d1 A d Q Q v v2= = Fr= A2 b*d2 g*d b b=3 [m] d2 1 = * 1 + 8 * Fr1 -1 2 hydraulic d1 2 jump the flowrate is simply a function of the gravitational acceleration, and the given data. d2 d2 1 Q 2 Q = 1 + 8 * -1 d1 * d1 2 g*b2*d1 3 d1=0.5 [m] 2 d2 g*b2*d1 * 2 3 Q= +1 -1 * d2=2.0 [m] d1 8

Find: hL [m] +1 -1 v1= = v2= = 2 d2 d1 Q Q A1 b*d1 d Q Q A2 b*d2 b b=3 [m] hydraulic jump m Plugging in the values for g, b, d1 and d2, the flowrate computes to, --- 9.81 d2 s2 Q d1 d1=0.5 [m] 2 d2 g*b2*d1 * 2 3 Q= +1 -1 * d2=2.0 [m] d1 8

Find: hL [m] +1 -1 v1= = v2= = Q=10.50 2 d2 d1 Q Q A1 b*d1 d Q Q A2 b=3 [m] m3 Q=10.50 s hydraulic jump m 10.50 meters cubed per second. [pause] To solve for the upstream and downstream velocities, --- 9.81 d2 s2 Q d1 d1=0.5 [m] 2 d2 g*b2*d1 * 2 3 Q= +1 -1 * d2=2.0 [m] d1 8

Find: hL [m] +1 -1 v1= = v2= = Q=10.50 2 d2 d1 Q Q A1 b*d1 d Q Q A2 b=3 [m] m3 Q=10.50 s hydraulic jump m the flowrate, base width, and depths are substituted in, and we get --- 9.81 d2 s2 Q d1 d1=0.5 [m] 2 d2 g*b2*d1 * 2 3 Q= +1 -1 * d2=2.0 [m] d1 8

Find: hL [m] +1 -1 v1= = =7.00 v2= = Q=10.50 2 d2 d1 Q Q A1 b*d1 d Q Q s A1 b*d1 d Q Q v2= = A2 b*d2 b b=3 [m] m3 Q=10.50 s hydraulic jump m velocity 1 equals 7 meters per second, and --- 9.81 d2 s2 Q d1 d1=0.5 [m] 2 d2 g*b2*d1 * 2 3 Q= +1 -1 * d2=2.0 [m] d1 8

Find: hL [m] +1 -1 v1= = =7.00 v2= = =1.75 Q=10.50 2 d2 d1 Q Q A1 b*d1 s A1 b*d1 d Q Q m v2= = =1.75 s A2 b*d2 b b=3 [m] m3 Q=10.50 s hydraulic jump m velocity 2 equals 1.75 meters per second. [pause] By knowing our velocities, --- 9.81 d2 s2 Q d1 d1=0.5 [m] 2 d2 g*b2*d1 * 2 3 Q= +1 -1 * d2=2.0 [m] d1 8

Find: hL [m] + - + ? ? v1=7.00 v2=1.75 hL= y1 y2 d b b=3 [m] hydraulic s d m v2=1.75 s b b=3 [m] ? ? hydraulic jump we can return to our equation, for headloss across the hydraulic jump, --- v1 v2 d2 2 hL= y1 + - 2 y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

Find: hL [m] - + + v1=7.00 v2=1.75 hL= y1 y2 d b b=3 [m] hydraulic s d m v2=1.75 s b b=3 [m] hydraulic jump plug in the values for velocity, --- v1 v2 d2 2 - 2 hL= y1 + y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

Find: hL [m] - + + v1=7.00 v2=1.75 hL= y1 y2 d b b=3 [m] hydraulic s d m v2=1.75 s b b=3 [m] hydraulic jump plug in the values for acceleration and the depths, and the headloss computes to --- v1 v2 d2 2 - 2 hL= y1 + y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

Find: hL [m] + - + hL= 0.841 [m] v1=7.00 v2=1.75 hL= y1 y2 d b b=3 [m] s d m v2=1.75 s b hL= 0.841 [m] b=3 [m] hydraulic jump 0.841 meters. v1 v2 d2 2 hL= y1 + - 2 y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

Find: hL [m] + - + hL= 0.841 [m] v1=7.00 v2=1.75 0.63 0.84 1.02 1.31 s d m v2=1.75 0.63 0.84 1.02 1.31 s b hL= 0.841 [m] b=3 [m] hydraulic jump Looking over the possible solutions, --- v1 v2 d2 2 hL= y1 + - 2 y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

Find: hL [m] + - + hL= 0.841 [m] AnswerB v1=7.00 v2=1.75 0.63 0.84 1.02 1.31 s b hL= 0.841 [m] b=3 [m] AnswerB hydraulic jump the answer is B. v1 v2 d2 2 2 hL= y1 + - y2 + Q 2*g 2*g d1 d1=0.5 [m] m 9.81 d2=2.0 [m] s2

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4