Dividing Polynomials © 2002 by Shawna Haider.

Slides:



Advertisements
Similar presentations
Polynomials Identify Monomials and their Degree
Advertisements

Warm-Up: January 5, 2012  Use long division (no calculators) to divide.
Dividing Polynomials Objectives
3.4 Division of Polynomials BobsMathClass.Com Copyright © 2010 All Rights Reserved. 1 Procedure: To divide a polynomial (in the numerator) by a monomial.
Dividing Polynomials.
Dividing Polynomials.
Synthetic Division. This method is used to divide polynomials, one of which is a binomial of degree one.
Dividing Polynomials  Depends on the situation.  Situation I: Polynomial Monomial  Solution is to divide each term in the numerator by the monomial.
Section 5Chapter 5. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives 2 3 Dividing Polynomials Divide a polynomial by a monomial. Divide.
HW: Pg #13-61 eoo.
Section 7.3 Products and Factors of Polynomials.
Dividing Polynomials 3
Section 3 Dividing Polynomials
Lesson 2.4, page 301 Dividing Polynomials Objective: To divide polynomials using long and synthetic division, and to use the remainder and factor theorems.
Rationals- Synthetic Division POLYNOMIAL DIVISION, FACTORS AND REMAINDERS Synthetic division is an alternative method to dividing rationals. The great.
EXAMPLE 1 Find a common monomial factor Factor the polynomial completely. a. x 3 + 2x 2 – 15x Factor common monomial. = x(x + 5)(x – 3 ) Factor trinomial.
Lesson 2.3 Real Zeros of Polynomials. The Division Algorithm.
Dividing Polynomials & The Remainder Theorem. Dividing Polynomials When dividing a polynomial by a monomial, divide each term in the polynomial by the.
5. Divide 4723 by 5. Long Division: Steps in Dividing Whole Numbers Example: 4716  5 STEPS 1. The dividend is The divisor is 5. Write.
Multiply polynomials vertically and horizontally
Polynomials Identify monomials and their degree Identify polynomials and their degree Adding and Subtracting polynomial expressions Multiplying polynomial.
Algebraic long division Divide 2x³ + 3x² - x + 1 by x + 2 x + 2 is the divisor The quotient will be here. 2x³ + 3x² - x + 1 is the dividend.
Dividing Polynomials Unit 6-5. Divide a polynomial by a monomial. Unit Objectives: Objective 1 Divide a polynomial by a polynomial of two or more terms.
Warm-up: 9/9 Factor the following polynomials a.) b.) c.)
Warm-Up. TEST Our Ch. 9 Test will be on 5/29/14 Complex Number Operations.
Chapter 1 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Dividing Polynomials; Remainder and Factor Theorems.
6-5: The Remainder and Factor Theorems Objective: Divide polynomials and relate the results to the remainder theorem.
Dividing Polynomials Using Synthetic Division. List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put.
Bellwork  Divide (No Calculators)  1. 8,790÷2  ,876÷32  3. 9,802,105÷30 Multiply #4 4. (5x-6)(2x+3)
Section 5.5. Dividing a Polynomial by a Polynomial The objective is to be able to divide a polynomial by a polynomial by using long division. Dividend.
Dividing Polynomials. First divide 3 into 6 or x into x 2 Now divide 3 into 5 or x into 11x Long Division If the divisor has more than one term, perform.
WARM UP Simplify DIVISION OF POLYNOMIALS OBJECTIVES  Divide a polynomial by a monomial.  Divide two polynomials when the divisor is not a monomial.
Let’s look at how to do this using the example: In order to use synthetic division these two things must happen: There must be a coefficient for every.
Today in Pre-Calculus Go over homework Notes: –Synthetic Division Homework.
Synthetic Division Objective: To use synthetic division to determine the zeros of a polynomial function.
Copyright © Cengage Learning. All rights reserved. 7 Rational Functions.
Objective Use long division and synthetic division to divide polynomials.
Warm Up Divide using long division ÷ ÷
Dividing a Polynomial by a Binomial
Division of Polynomials
Reminder steps for Long Division
Dividing Polynomials.
Remainder and Factor Theorem
How to Factor!.
Synthetic Division.
Warm Ups: 1) (4x3 + 2x2 + 1) – (x2 + x – 5)
Dividing Polynomials.
Dividing Polynomials.
Warm-up: Do you remember how to do long division? Try this: (without a calculator!)
4.1 Objective: Students will look at polynomial functions of degree greater than 2, approximate the zeros, and interpret graphs.
Dividing Polynomials.
4.3 Division of Polynomials
Dividing Polynomials.
Objective Use long division and synthetic division to divide polynomials.
Dividing Polynomials.
Dividing Polynomials.
Warm-up: Divide using Long Division
5.5 - Long and Synthetic Division
Polynomial and Synthetic Division
Dividing Polynomials Using Synthetic Division
Do Now  .
Chapter 5 Section 4 and 5.
Reminder steps for Long Division
Dividing Polynomials.
Synthetic Division.
Dividing Polynomials.
Dividing Polynomials.
Synthetic Division.
Synthetic Division Notes
Presentation transcript:

Dividing Polynomials © 2002 by Shawna Haider

3x3 4x2 x 2 1 1 1 1 Dividing by a Monomial If the divisor only has one term, split the polynomial up into a fraction for each term. divisor Now reduce each fraction. 3x3 4x2 x 2 1 1 1 1

Subtract (which changes the sign of each term in the polynomial) Long Division If the divisor has more than one term, perform long division. You do the same steps with polynomial division as with integers. Let's do two problems, one with integers you know how to do and one with polynomials and copy the steps. Subtract (which changes the sign of each term in the polynomial) Now multiply by the divisor and put the answer below. x + 11 2 1 Bring down the next number or term Multiply and put below Now divide 3 into 5 or x into 11x First divide 3 into 6 or x into x2 32 698 x - 3 x2 + 8x - 5 Remainder added here over divisor 64 x2 – 3x subtract 5 8 11x - 5 32 11x - 33 This is the remainder 26 28 So we found the answer to the problem x2 + 8x – 5  x – 3 or the problem written another way:

Remainder added here over divisor Let's Try Another One If any powers of terms are missing you should write them in with zeros in front to keep all of your columns straight. Subtract (which changes the sign of each term in the polynomial) y - 2 Write out with long division including 0y for missing term Multiply and put below Bring down the next term Multiply and put below y + 2 y2 + 0y + 8 Divide y into y2 Divide y into -2y Remainder added here over divisor y2 + 2y subtract -2y + 8 - 2y - 4 This is the remainder 12

- 3 1 6 8 -2 - 3 - 9 3 1 x2 + x 3 - 1 1 1 Synthetic Division There is a shortcut for long division as long as the divisor is x – k where k is some number. (Can't have any powers on x). Set divisor = 0 and solve. Put answer here. x + 3 = 0 so x = - 3 1 - 3 1 6 8 -2 Multiply these and put answer above line in next column Multiply these and put answer above line in next column Multiply these and put answer above line in next column Bring first number down below line - 3 Add these up - 9 3 Add these up Add these up 1 x2 + x 3 - 1 1 This is the remainder Put variables back in (one x was divided out in process so first number is one less power than original problem). So the answer is: List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put in a 0.

Let's try another Synthetic Division 0 x3 0 x Set divisor = 0 and solve. Put answer here. x - 4 = 0 so x = 4 1 4 1 0 - 4 0 6 Multiply these and put answer above line in next column Multiply these and put answer above line in next column Multiply these and put answer above line in next column Multiply these and put answer above line in next column Bring first number down below line 4 Add these up 16 48 192 Add these up Add these up Add these up 1 x3 + x2 + x + 4 12 48 198 This is the remainder Now put variables back in (remember one x was divided out in process so first number is one less power than original problem so x3). So the answer is: List all coefficients (numbers in front of x's) and the constant along the top. Don't forget the 0's for missing terms.

Let's try a problem where we factor the polynomial completely given one of its factors. You want to divide the factor into the polynomial so set divisor = 0 and solve for first number. - 2 4 8 -25 -50 Multiply these and put answer above line in next column Multiply these and put answer above line in next column Multiply these and put answer above line in next column Bring first number down below line - 8 Add these up 50 Add these up Add these up No remainder so x + 2 IS a factor because it divided in evenly 4 x2 + x - 25 Put variables back in (one x was divided out in process so first number is one less power than original problem). So the answer is the divisor times the quotient: List all coefficients (numbers in front of x's) and the constant along the top. If a term is missing, put in a 0. You could check this by multiplying them out and getting original polynomial