Chapter 3 Conics 3.4 The Ellipse MATHPOWERTM 12, WESTERN EDITION 3.4.1.

Slides:



Advertisements
Similar presentations
The Parabola 3.6 Chapter 3 Conics 3.6.1
Advertisements

The Ellipse 10.3 Chapter 10 Analytic Geometry 3.4.1
10.1 Parabolas.
11.2 The Ellipse.
10.3 Ellipses JMerrill, General Second Degree Equation Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0.
Ellipses (page 7) General form is Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 where A ≠ C and A and C are same sign.
Unit 5 Conics... The parabola is the locus of all points in a plane that are the same distance from a line in the plane, the directrix, as from a fixed.
Questions over Assignment  3R- One more thing we need to do on 8, 9, & 10.
9.1.1 – Conic Sections; The Ellipse
MATHPOWER TM 12, WESTERN EDITION Chapter 3 Conics.
Advanced Geometry Conic Sections Lesson 4
Unit #4 Conics. An ellipse is the set of all points in a plane whose distances from two fixed points in the plane, the foci, is constant. Major Axis Minor.
What is the standard form of a parabola who has a focus of ( 1,5) and a directrix of y=11.
Translating Conic Sections
Section 7.3 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
10.6 – Translating Conic Sections. Translating Conics means that we move them from the initial position with an origin at (0, 0) (the parent graph) to.
Ax 2 + Bxy + Cy 2 + Dx + Ey + F=0 General Equation of a Conic Section:
Sullivan Algebra and Trigonometry: Section 10.3 The Ellipse Objectives of this Section Find the Equation of an Ellipse Graph Ellipses Discuss the Equation.
10.5 Rotation of Conics. The Standard Equation for all Conics Ax 2 + Bxy + Cy 2 + Dx + Ey + F = o So far B has equal zero and all graphs have been horizontal.
Copyright © Cengage Learning. All rights reserved. 9.3 Hyperbolas and Rotation of Conics.
10.3 The Ellipse.
Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
Conic Sections The Ellipse Part A. Ellipse Another conic section formed by a plane intersecting a cone Ellipse formed when.
Making graphs and using equations of ellipses. An ellipse is the set of all points P in a plane such that the sum of the distance from P to 2 fixed points.
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
MATHPOWER TM 12, WESTERN EDITION Chapter 3 Conics.
STANDARD FORM OF EQUATIONS OF TRANSLATED CONICS
STANDARD FORM OF EQUATIONS OF TRANSLATED CONICS
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Classifying Conic Sections
Translating Conic Sections
Conics Parabolas, Hyperbolas and Ellipses
Conic Sections “By Definition”
Topics in Analytic Geometry
Ellipses Date: ____________.
Chapter 3 Conics 3.4 The Ellipse MATHPOWERTM 12, WESTERN EDITION
The Parabola Wednesday, November 21, 2018Wednesday, November 21, 2018
Conic Sections: The Ellipse
Ellipses 5.3 (Chapter 10 – Conics). Ellipses 5.3 (Chapter 10 – Conics)
MATH 1330 Section 8.2b.
Chapter 9 Conic Sections.
Section 10.2 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Graph and Write Equations of Ellipses
Ellipses Ellipse: set of all points in a plane such that the sum of the distances from two given points in a plane, called the foci, is constant. Sum.
Review Circles: 1. Find the center and radius of the circle.
Problems #1-6 on worksheet
Ellipses Objectives: Write the standard equation for an ellipse given sufficient information Given an equation of an ellipse, graph it and label the center,
Test Dates Thursday, January 4 Chapter 6 Team Test
Objectives and Vocabulary
9.4 Graph & Write Equations of Ellipses
Sullivan Algebra and Trigonometry: Section 11.3
Conic Sections The Ellipse Part A.
Section 10.2 Ellipses.
distance out from center distance up/down from center
10-3 Ellipses Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2.
The Hyperbola Week 18.
4 minutes Warm-Up Write the standard equation of the circle with the given radius and center. 1) 9; (0,0) 2) 1; (0,5) 3) 4; (-8,-1) 4) 5; (4,2)
THE ELLIPSE Week 17.
Chapter 10 Conic Sections.
Section 11.6 – Conic Sections
5.3 Ellipse (part 2) Definition: An ellipse is the set of all points in a plane such that the sum of the distances from P to two fixed points (F1 and.
Warm up: Write an equation for the circle that has center (5, 0), and radius 6 units. A. x2 + (y – 5)2 = 36 B. x2 – (y – 5)2 = 36 C. (x – 5)2 + y2 = 36.
STANDARD FORM OF EQUATIONS OF TRANSLATED CONICS
Chapter 10 Conic Sections.
10.6 – Translating Conic Sections
Graph information to Equation (going the other direction)
Polar Equations of Conics
10.3 Ellipses.
What is The equation of an Ellipse
Presentation transcript:

Chapter 3 Conics 3.4 The Ellipse MATHPOWERTM 12, WESTERN EDITION 3.4.1

The Ellipse An ellipse is the locus of all points in a plane such that the sum of the distances from two given points in the plane, the foci, is constant. Minor Axis Major Axis Focus 1 Focus 2 Point PF1 + PF2 = constant 3.4.2

The Standard Forms of the Equation of the Ellipse The standard form of an ellipse centred at the origin with the major axis of length 2a along the x-axis and a minor axis of length 2b along the y-axis, is: 3.4.3

The Standard Forms of the Equation of the Ellipse [cont’d] The standard form of an ellipse centred at the origin with the major axis of length 2a along the y-axis and a minor axis of length 2b along the x-axis, is: 3.4.4

a2 = b2 + c2 b2 = a2 - c2 c2 = a2 - b2 The Pythagorean Property b a c F1(-c, 0) F2(c, 0) Length of major axis: 2a Length of minor axis: 2b Vertices: (a, 0) and (-a, 0) Foci: (-c, 0) and (c, 0) 3.4.5

The Standard Forms of the Equation of the Ellipse [cont’d] The standard form of an ellipse centred at any point (h, k) with the major axis of length 2a parallel to the x-axis and a minor axis of length 2b parallel to the y-axis, is: (h, k) 3.4.6

The Standard Forms of the Equation of the Ellipse [cont’d] The standard form of an ellipse centred at any point (h, k) with the major axis of length 2a parallel to the y-axis and a minor axis of length 2b parallel to the x-axis, is: (h, k) 3.4.7

[ ] Finding the General Form of the Ellipse The general form of the ellipse is: Ax2 + Cy2 + Dx + Ey + F = 0 A x C > 0 and A ≠ C The general form may be found by expanding the standard form and then simplifying: [ ] 225 25x2 + 9y2 - 200x + 36y + 211 = 0 3.4.8

Finding the Centre, Axes, and Foci State the coordinates of the vertices, the coordinates of the foci, and the lengths of the major and minor axes of the ellipse, defined by each equation. a) The centre of the ellipse is (0, 0). Since the larger number occurs under the x2, the major axis lies on the x-axis. a The length of the major axis is 8. b The length of the minor axis is 6. c The coordinates of the vertices are (4, 0) and (-4, 0). To find the coordinates of the foci, use the Pythagorean property: c2 = a2 - b2 = 42 - 32 = 16 - 9 = 7 The coordinates of the foci are: and 3.4.9

Finding the Centre, Axes, and Foci b) 4x2 + 9y2 = 36 The centre of the ellipse is (0, 0). Since the larger number occurs under the x2, the major axis lies on the x-axis. The length of the major axis is 6. b a The length of the minor axis is 4. c The coordinates of the vertices are (3, 0) and (-3, 0). To find the coordinates of the foci, use the Pythagorean property. c2 = a2 - b2 = 32 - 22 = 9 - 4 = 5 The coordinates of the foci are: and 3.4.10

Finding the Equation of the Ellipse With Centre at (0, 0) a) Find the equation of the ellipse with centre at (0, 0), foci at (5, 0) and (-5, 0), a major axis of length 16 units, and a minor axis of length 8 units. Since the foci are on the x-axis, the major axis is the x-axis. The length of the major axis is 16 so a = 8. The length of the minor axis is 8 so b = 4. Standard form 64 64 x2 + 4y2 = 64 x2 + 4y2 - 64 = 0 General form 3.4.11

Finding the Equation of the Ellipse With Centre at (0, 0) b) The length of the major axis is 12 so a = 6. The length of the minor axis is 6 so b = 3. 36 36 4x2 + y2 = 36 4x2 + y2 - 36 = 0 General form Standard form 3.4.12

Finding the Equation of the Ellipse With Centre at (h, k) Find the equation for the ellipse with the centre at (3, 2), passing through the points (8, 2), (-2, 2), (3, -5), and (3, 9). The major axis is parallel to the y-axis and has a length of 14 units, so a = 7. The minor axis is parallel to the x-axis and has a length of 10 units, so b = 5. The centre is at (3, 2), so h = 3 and k = 2. (3, 2) Standard form 49(x - 3)2 + 25(y - 2)2 = 1225 49(x2 - 6x + 9) + 25(y2 - 4y + 4) = 1225 49x2 - 294x + 441 + 25y2 - 100y + 100 = 1225 49x2 + 25y2 -294x - 100y + 541 = 1225 49x2 + 25y2 -294x - 100y - 684 = 0 General form 3.4.13

Finding the Equation of the Ellipse With Centre at (h, k) b) The major axis is parallel to the x-axis and has a length of 12 units, so a = 6. The minor axis is parallel to the y-axis and has a length of 6 units, so b = 3. The centre is at (-3, 2), so h = -3 and k = 2. (-3, 2) Standard form (x + 3)2 + 4(y - 2)2 = 36 (x2 + 6x + 9) + 4(y2 - 4y + 4) = 36 x2 + 6x + 9 + 4y2 - 16y + 16 = 36 x2 + 4y2 + 6x - 16y + 25 = 36 x2 + 4y2 + 6x - 16y - 11 = 0 General form 3.4.14

a2 = b2 + c2 b2 = a2 - c2 c2 = a2 - b2 Analysis of the Ellipse Find the coordinates of the centre, the length of the major and minor axes, and the coordinates of the foci of each ellipse: Recall: PF1 + PF2 = 2a a2 = b2 + c2 b2 = a2 - c2 c2 = a2 - b2 P a b a c c F1(-c, 0) F2(c, 0) Length of major axis: 2a Length of minor axis: 2b Vertices: (a, 0) and (-a, 0) Foci: (-c, 0) and (c, 0) 3.4.15

Analysis of the Ellipse [cont’d] a) x2 + 4y2 - 2x + 8y - 11 = 0 x2 + 4y2 - 2x + 8y - 11 = 0 (x2 - 2x ) + (4y2 + 8y) - 11 = 0 (x2 - 2x + _____) + 4(y2 + 2y + _____) = 11 + _____ + _____ 1 1 1 4 (x - 1)2 + 4(y + 1)2 = 16 Since the larger number occurs under the x2, the major axis is parallel to the x-axis. h = k = a = b = 1 -1 4 2 c2 = a2 - b2 = 42 - 22 = 16 - 4 = 12 The centre is at (1, -1). The major axis, parallel to the x-axis, has a length of 8 units. The minor axis, parallel to the y-axis, has a length of 4 units. The foci are at and 3.4.16

Sketching the Graph of the Ellipse [cont’d] x2 + 4y2 - 2x + 8y - 11 = 0 Centre (1, -1) (1, -1) F2 F1 3.4.17

Analysis of the Ellipse b) 9x2 + 4y2 - 18x + 40y - 35 = 0 9x2 + 4y2 - 18x + 40y - 35 = 0 (9x2 - 18x ) + (4y2 + 40y) - 35 = 0 9(x2 - 2x + _____) + 4(y2 + 10y + _____) = 35 + _____ + _____ 1 25 9 100 9(x - 1)2 + 4(y + 5)2 = 144 Since the larger number occurs under the y2, the major axis is parallel to the y-axis. h = k = a = b = 1 -5 6 4 c2 = a2 - b2 = 62 - 42 = 36 - 16 = 20 The centre is at (1, -5). The major axis, parallel to the y-axis, has a length of 12 units. The minor axis, parallel to the x-axis, has a length of 8 units. The foci are at: and 3.4.18

Sketching the Graph of the Ellipse [cont’d] 9x2 + 4y2 - 18x + 40y - 35 = 0 F1 F2 3.4.19

Graphing an Ellipse Using a Graphing Calculator (x - 1)2 + 4(y + 1)2 = 16 4(y + 1)2 = 16 - (x - 1)2 3.4.20

General Effects of the Parameters A and C When A ≠ C, and A x C > 0, the resulting conic is an ellipse. If | A | > | C |, it is a vertical ellipse. If | A | < | C |, it is a horizontal ellipse. The closer in value A is to C, the closer the ellipse is to a circle. 3.4.21

Assignment Suggested Questions: Pages 150-152 A 1-20 B 21, 23, 25, 33, 36, 39, 40 3.4.22