Mobility of Calcium Channels in the Presynaptic Membrane

Slides:



Advertisements
Similar presentations
Volume 74, Issue 3, Pages (May 2012)
Advertisements

Maturation of a Recurrent Excitatory Neocortical Circuit by Experience-Dependent Unsilencing of Newly Formed Dendritic Spines  Michael C. Ashby, John T.R.
Johanna Sigl-Glöckner, Michael Brecht  Cell Reports 
Volume 70, Issue 2, Pages (April 2011)
Mark E.J. Sheffield, Michael D. Adoff, Daniel A. Dombeck  Neuron 
Volume 95, Issue 1, Pages e5 (July 2017)
Isabella Maiellaro, Martin J. Lohse, Robert J. Kittel, Davide Calebiro 
Volume 67, Issue 1, Pages (July 2010)
Volume 88, Issue 2, Pages (October 2015)
Volume 129, Issue 2, Pages (April 2007)
Volume 62, Issue 5, Pages (June 2009)
Control of Inhibitory Synaptic Outputs by Low Excitability of Axon Terminals Revealed by Direct Recording  Shin-ya Kawaguchi, Takeshi Sakaba  Neuron 
Daniel Meyer, Tobias Bonhoeffer, Volker Scheuss  Neuron 
Volume 22, Issue 3, Pages (March 2012)
Volume 99, Issue 9, Pages (November 2010)
Volume 91, Issue 3, Pages (August 2016)
There's More Than One Way to Scale a Synapse
Single-Molecule Microscopy Reveals Plasma Membrane Microdomains Created by Protein-Protein Networks that Exclude or Trap Signaling Molecules in T Cells 
Volume 54, Issue 3, Pages (May 2007)
Volume 63, Issue 1, Pages (July 2009)
Linda Balabanian, Christopher L. Berger, Adam G. Hendricks 
Brad K. Hulse, Evgueniy V. Lubenov, Athanassios G. Siapas  Cell Reports 
Yunyun Han, Pascal S. Kaeser, Thomas C. Südhof, Ralf Schneggenburger 
Volume 78, Issue 4, Pages (May 2013)
Volume 97, Issue 2, Pages (July 2009)
Volume 68, Issue 6, Pages (December 2010)
Volume 67, Issue 6, Pages (September 2010)
Johanna Sigl-Glöckner, Michael Brecht  Cell Reports 
Volume 57, Issue 4, Pages (February 2008)
Volume 91, Issue 2, Pages (July 2016)
Topographic Mapping of the Synaptic Cleft into Adhesive Nanodomains
The Constant Region of the Membrane Immunoglobulin Mediates B Cell-Receptor Clustering and Signaling in Response to Membrane Antigens  Pavel Tolar, Joseph.
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Volume 74, Issue 2, Pages (April 2012)
Volume 60, Issue 4, Pages (November 2008)
Volume 22, Issue 8, Pages (February 2018)
Volume 89, Issue 3, Pages (February 2016)
Volume 87, Issue 3, Pages (August 2015)
Inhibitory Actions Unified by Network Integration
Benjamin Scholl, Daniel E. Wilson, David Fitzpatrick  Neuron 
Ethan S. Bromberg-Martin, Okihide Hikosaka  Neuron 
Volume 63, Issue 1, Pages (July 2009)
Volume 71, Issue 6, Pages (September 2011)
Glutamate Receptor Dynamics in Dendritic Microdomains
Bo Li, Ran-Sook Woo, Lin Mei, Roberto Malinow  Neuron 
Tiago Branco, Kevin Staras, Kevin J. Darcy, Yukiko Goda  Neuron 
Ashkan Javaherian, Hollis T. Cline  Neuron 
Michael W. Gramlich, Vitaly A. Klyachko  Cell Reports 
Dario Maschi, Vitaly A. Klyachko  Neuron 
Modulation of GABAergic Transmission by Activity via Postsynaptic Ca2+-Dependent Regulation of KCC2 Function  Hubert Fiumelli, Laura Cancedda, Mu-ming.
Volume 58, Issue 4, Pages (May 2008)
Volume 111, Issue 6, Pages (September 2016)
Sylvain Chauvette, Josée Seigneur, Igor Timofeev  Neuron 
Cecile Bats, Laurent Groc, Daniel Choquet  Neuron 
Spontaneous Neurotransmitter Release Shapes Dendritic Arbors via Long-Range Activation of NMDA Receptors  Laura C. Andreae, Juan Burrone  Cell Reports 
Brandon Ho, Anastasia Baryshnikova, Grant W. Brown  Cell Systems 
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Volume 106, Issue 1, Pages (January 2014)
Ruth D. Taylor, Martin Heine, Nigel J. Emptage, Laura C. Andreae 
Control of KCa Channels by Calcium Nano/Microdomains
Honghui Zhang, Andrew J. Watrous, Ansh Patel, Joshua Jacobs  Neuron 
Volume 54, Issue 3, Pages (May 2007)
Volume 59, Issue 2, Pages (July 2008)
Saad Hannan, Kim Gerrow, Antoine Triller, Trevor G. Smart  Cell Reports 
Volume 113, Issue 11, Pages (December 2017)
Volume 23, Issue 13, Pages (June 2018)
Volume 26, Issue 12, Pages e3 (March 2019)
S. Rüdiger, Ch. Nagaiah, G. Warnecke, J.W. Shuai  Biophysical Journal 
Volume 15, Issue 9, Pages (May 2016)
The Constant Region of the Membrane Immunoglobulin Mediates B Cell-Receptor Clustering and Signaling in Response to Membrane Antigens  Pavel Tolar, Joseph.
Presentation transcript:

Mobility of Calcium Channels in the Presynaptic Membrane Romy Schneider, Eric Hosy, Johannes Kohl, Julia Klueva, Daniel Choquet, Ulrich Thomas, Andreas Voigt, Martin Heine  Neuron  Volume 86, Issue 3, Pages 672-679 (May 2015) DOI: 10.1016/j.neuron.2015.03.050 Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 1 Synaptic and Extrasynaptic Mobility of VDCCs and Syntaxin1A (A and B) CaV2.1::mEOS2 and CaV2.2::mEOS2 (green) enrich at hippocampal synapses revealed by uptake of anti-Syt1 (magenta). Second row displays localization of channel molecules within a focal plane. Third row shows trajectories of channel molecules along axonal segments with selected regions enlarged below. Few channels escaping synaptic areas indicate exchange between compartments (arrows). Scale bars: 3 μm, 0.5 μm for zoomed examples. (C–E) Plot of mean square displacement (MSD) over time intervals for axonal, synaptic mobile, and immobile CaV2.1::mEOS2 (C; n = 32/105/60 for axonal/synaptic mobile/synaptic immobile trajectories), CaV2.2::mEOS2 (D; 425/420/227), and Syntaxin1A::mEOS2 (E; n = 538/130 for axonal/synaptic mobile trajectories). (F–H) Normalized distribution of diffusion coefficients for CaV2.1::mEOS2 (F; n = 612/3281 for axonal/synaptic trajectories), CaV2.2::mEOS2 (G; 5046/22681), and Syntaxin1A (H; 5849/30139). Dotted lines mark threshold for immobile fractions (D < 0.002 μm2/s). Data in (C)–(H) are from 2–5 neuronal cultures 14–21 DIV. Neuron 2015 86, 672-679DOI: (10.1016/j.neuron.2015.03.050) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 2 Calcium Channel Surface Expression and Mobility under Varying Conditions (A and B) Effect of α2δ1 expression on CaV::mEOS2 surface expression, exemplified for synaptic CaV2.1 in (A) and quantified for both channel subtypes in (B). Scale bar: 1 μm. (B) Synaptic CaV2::mEOS2 trajectories > 8 points (2 cultures, CaV2.1::mEOS2 n = 97 synapses, +α2δ1, n = 77; CaV2.2::mEOS2 n = 51, +α2δ1, n = 50). (C) Diffusion coefficient of mobile fractions (D > 0.002 μm2/s) of CaV2.1::mEOS2, CaV2.2::mEOS2, and Syntaxin1A::mEOS2 under conditions as indicated (CaV2.1::mEOS2: ncon = 1,794/ nKCl = 1,280/ nα2δ1 = 7,681/ nEGTA = 5,275/ nBAPTA = 1,457; CaV2.2::mEOS2: ncon = 1,734/ nKCl = 2,518/ nα2δ1 = 11,087/ nEGTA = 8,870/ nBAPTA = 2,487; Syntaxin1A::mEOS2: ncon = 21,289/ nBAPTA = 26,661, data from 2–5 cultures, probed by Kruskal-Wallis test followed by Dunn’s test). (D) Immobile fractions of CaV2.1::mEOS2, CaV2.2::mEOS2, and Syntaxin1A::mEOS2 under various conditions. (E) Radius of confinement of mobile channels and syntaxin1A within synapses given as medians and interquartile range. Data from 2–5 cultures, probed by one-way ANOVA test followed by Dunnett’s test (CaV2.1::mEOS2: n = 153 synapses, +α2δ1 n = 278, +EGTA-AM n = 293, +BAPTA-AM n = 97; CaV2.2::mEOS2: n = 512, +α2δ1 n = 247, +EGTA-AM n = 96, +BAPTA-AM n = 40; syntaxin1A: n = 105). Neuron 2015 86, 672-679DOI: (10.1016/j.neuron.2015.03.050) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 3 Enlarged AZ upon Co-Expression of α1 and α2δ1 Subunits (A) CaV2.1::GFP (confocal) and Bassoon-clusters (STED) in neurons co-transfected with CaV2.1::GFP and α2δ1 are bigger (arrows) than in CaV2.1::GFP only or non-transfected neurons. Scale bars: 2 μm. (B and C) Lengths (principal) and widths (auxiliary) of Bassoon and RIM protein domains determined by 2D Gauss fitting. Data are shown as median with interquartile range from 2 cultures tested by Kruskal-Wallis test followed by a Dunn’s test (Bassoon clusters: ncon = 1,197 synapses, nCaV2.1::GFP = 92, n+α2δ1 = 96; nCaV2.2::GFP = 64, n+α2δ1 = 95; RIM clusters: ncon = 237 synapses, nCaV2.1::GFP = 184, n+α2δ1 = 176; nCaV2.2::GFP = 99, n+α2δ1 = 153). Neuron 2015 86, 672-679DOI: (10.1016/j.neuron.2015.03.050) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 4 Modeling of Calcium Fluctuations as Function of Channel Number and Mobility (A) Impact of channel density on intracellular calcium fluctuations at 5 and 10 nm distances from the membrane. Channel dynamics is color coded for three ranges of diffusion coefficient (gray, D > 0.01 μm2/s; pink, D = 0.001–0.01 μm2/s; red, D < 0.001 μm2/s). [Ca2+]i is color coded as indicated in the scale bar from 0 to 200 μM. (B) The CV for [Ca2+]i fluctuations plotted against channel numbers within depicted areas of 300 × 300 nm (blue), 400 × 400 nm (red), 500 × 500 nm (green). A median diffusion coefficient of 0.02 μm2/s was assumed and channel open probability set to 0.5; for other parameters, see Supplemental Information. Inset shows channel density at maximal calcium variability versus AZ size. (C) Within a 300 × 300 nm area, one vesicle (black spot) was randomly placed 5 nm above the membrane. Channel distribution was monitored for static and mobile channel populations at time points as indicated and triggered for activation (see Supplemental Information for parameters). A colored vesicle indicates successful release due to random rearrangement of channels. (D) Pr plotted against channel density for populations of mobile channels (blue), immobile channels (black), or reduced mobility in presence of BAPTA-AM (red). Note that the sudden jump of the Pr is caused by the parameter of one RRV (see also Supplemental Information for parameters). Arrow indicates the density corresponding to the example distributions in (C). Points represent mean Pr ± SD of 100 iterations for given densities. Neuron 2015 86, 672-679DOI: (10.1016/j.neuron.2015.03.050) Copyright © 2015 Elsevier Inc. Terms and Conditions