Volume 8, Issue 1, Pages (July 2014)

Slides:



Advertisements
Similar presentations
Volume 130, Issue 5, Pages (September 2007)
Advertisements

Volume 13, Issue 6, Pages (March 2004)
Structure of the Molecular Chaperone Prefoldin
Sebastian Meyer, Raimund Dutzler  Structure 
Volume 125, Issue 1, Pages (April 2006)
Volume 124, Issue 1, Pages (January 2006)
Volume 14, Issue 9, Pages (September 2006)
Identification of Phe187 as a Crucial Dimerization Determinant Facilitates Crystallization of a Monomeric Retroviral Integrase Core Domain  Meytal Galilee,
Volume 9, Issue 5, Pages (May 2001)
Tamas Yelland, Snezana Djordjevic  Structure 
Volume 34, Issue 4, Pages (May 2009)
Volume 23, Issue 7, Pages (July 2015)
Volume 14, Issue 5, Pages (May 2006)
Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes
Volume 19, Issue 7, Pages (July 2011)
Volume 25, Issue 1, Pages (January 2017)
Structure of CheA, a Signal-Transducing Histidine Kinase
Volume 4, Issue 5, Pages (November 1999)
Volume 91, Issue 7, Pages (December 1997)
Volume 26, Issue 2, Pages e3 (February 2018)
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Crystal Structure of a Y-Family DNA Polymerase in Action
Crystal Structure of a DinB Lesion Bypass DNA Polymerase Catalytic Fragment Reveals a Classic Polymerase Catalytic Domain  Bo-Lu Zhou, Janice D. Pata,
Volume 28, Issue 6, Pages (December 2007)
Volume 20, Issue 1, Pages 9-19 (October 2005)
Volume 124, Issue 5, Pages (March 2006)
Andrew H. Huber, W.James Nelson, William I. Weis  Cell 
Zhenjian Cai, Nabil H. Chehab, Nikola P. Pavletich  Molecular Cell 
Volume 10, Issue 2, Pages (August 2002)
Volume 130, Issue 5, Pages (September 2007)
Solution Structure of the RAIDD CARD and Model for CARD/CARD Interaction in Caspase-2 and Caspase-9 Recruitment  James J Chou, Hiroshi Matsuo, Hanjun.
Daniel Olal, Oliver Daumke  Cell Reports 
Volume 23, Issue 12, Pages (December 2015)
Volume 24, Issue 3, Pages (March 2016)
Volume 19, Issue 9, Pages (September 2011)
Coiled-Coil Domains of SUN Proteins as Intrinsic Dynamic Regulators
Crystal Structure of Carnitine Acetyltransferase and Implications for the Catalytic Mechanism and Fatty Acid Transport  Gerwald Jogl, Liang Tong  Cell 
The Structure of Chorismate Synthase Reveals a Novel Flavin Binding Site Fundamental to a Unique Chemical Reaction  John Maclean, Sohail Ali  Structure 
Volume 21, Issue 1, Pages (January 2013)
Crystallographic Analysis of the Recognition of a Nuclear Localization Signal by the Nuclear Import Factor Karyopherin α  Elena Conti, Marc Uy, Lore Leighton,
Volume 8, Issue 5, Pages (November 2001)
Volume 6, Issue 1, Pages (July 2000)
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Volume 20, Issue 1, Pages (October 2005)
David Jeruzalmi, Mike O'Donnell, John Kuriyan  Cell 
Jeffrey J. Wilson, Rhett A. Kovall  Cell 
Volume 26, Issue 1, Pages (April 2007)
Volume 12, Issue 1, Pages (July 2015)
Volume 34, Issue 3, Pages (May 2009)
Volume 14, Issue 6, Pages (June 2006)
A YidC-like Protein in the Archaeal Plasma Membrane
Gregory J. Miller, James H. Hurley  Molecular Cell 
Crystal structures of Nova-1 and Nova-2 K-homology RNA-binding domains
Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis  Marcin Nowotny, Sergei A. Gaidamakov, Robert.
Nina C. Leksa, Stephen G. Brohawn, Thomas U. Schwartz  Structure 
Structural and Mechanistic Analysis of the Slx1-Slx4 Endonuclease
Volume 13, Issue 5, Pages (May 2005)
Volume 12, Issue 11, Pages (November 2004)
Pingwei Li, Gerry McDermott, Roland K. Strong  Immunity 
Volume 9, Issue 3, Pages (March 2001)
The Structure of T. aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases  Scott Bailey, Richard A. Wing, Thomas A. Steitz 
Volume 15, Issue 9, Pages (September 2007)
Sabine Pokutta, William I. Weis  Molecular Cell 
The Crystal Structure of an Unusual Processivity Factor, Herpes Simplex Virus UL42, Bound to the C Terminus of Its Cognate Polymerase  Harmon J Zuccola,
Volume 7, Issue 6, Pages (June 2001)
Volume 17, Issue 5, Pages (May 2009)
Volume 19, Issue 7, Pages (July 2011)
Volume 13, Issue 6, Pages (March 2004)
Morgan Huse, Ye-Guang Chen, Joan Massagué, John Kuriyan  Cell 
Volume 95, Issue 2, Pages (October 1998)
Presentation transcript:

Volume 8, Issue 1, Pages 84-93 (July 2014) FAN1 Activity on Asymmetric Repair Intermediates Is Mediated by an Atypical Monomeric Virus-type Replication-Repair Nuclease Domain  Simon Pennell, Anne-Cécile Déclais, Jiejin Li, Lesley F. Haire, Wioletta Berg, José W. Saldanha, Ian A. Taylor, John Rouse, David M.J. Lilley, Stephen J. Smerdon  Cell Reports  Volume 8, Issue 1, Pages 84-93 (July 2014) DOI: 10.1016/j.celrep.2014.06.001 Copyright © 2014 The Authors Terms and Conditions

Cell Reports 2014 8, 84-93DOI: (10.1016/j.celrep.2014.06.001) Copyright © 2014 The Authors Terms and Conditions

Figure 1 FAN1Domain Schematic and Catalytic Activity (A) Domain organization of hFAN1 and pFAN1. hFAN1 domain boundaries from Smogorzewska et al. (2010). (B) Endonucleolytic cleavage of 5′-labeled 5′ flap DNA by human FAN1 and orthologs. (C) 5′-3′ exonucleolytic cleavage of 3′-labeled 5′ flap DNA by human FAN1 and orthologs. (D) Progression of a- and b-strand 5′ flap cleavage by pFAN1. (E) Schematic of the proposed mechanism of pFAN1 activity on 5′ flaps. Cell Reports 2014 8, 84-93DOI: (10.1016/j.celrep.2014.06.001) Copyright © 2014 The Authors Terms and Conditions

Figure 2 Crystal Structures of Prokaryotic VRR-Nuc Domain Proteins (A) Structures of stNUC, saNUC, and psNUC dimers. α helices in red, 310 helices pink, and β sheets blue. In each case, the dimeric partner is shown in light pink. Adjacent are electrostatic representations of the active site surface with magnesium atoms as gray spheres if present. (B) Topology diagrams demonstrating similarity between the structures of stNUC and Hjc. Core secondary structural elements are in red and active site residues highlighted. (C) Active site of stNUC (left) and psNUC (right). Cell Reports 2014 8, 84-93DOI: (10.1016/j.celrep.2014.06.001) Copyright © 2014 The Authors Terms and Conditions

Figure 3 Characterization of Prokaryotic VRR-Nuc Domain Proteins (A) AUC sedimentation velocity of stNUC demonstrating a dimeric species with table of VRR-Nuc AUC-derived parameters inset. (B) Gel mobility shift assay of psNUC and stNUC with HJ substrates. (C) Cleavage of a HJ substrate by psNUC. (D) psNUC cleavage sites mapped onto the HJ secondary structure. (E) Cleavage of a HJ substrate by stNUC and saNUC. (F) stNUC (red arrows) and saNUC (black arrows) cleavage sites mapped onto the HJ secondary structure. Cell Reports 2014 8, 84-93DOI: (10.1016/j.celrep.2014.06.001) Copyright © 2014 The Authors Terms and Conditions

Figure 4 FAN1 Oligomeric Status (A) Overlay of S200 gel filtration traces of FAN1 orthologs against molecular weight standards. (B) AUC sedimentation velocity run of mFAN1 at 4°C demonstrating a monomeric species with table of FAN1 AUC-derived parameters inset. (C) S200 gel filtration trace of trypsin-treated hFAN1_360 showing the elution of a single protein peak. An SDS-PAGE gel of fractions across the peak is inset demonstrating the presence of three coeluting protein fragments. Cell Reports 2014 8, 84-93DOI: (10.1016/j.celrep.2014.06.001) Copyright © 2014 The Authors Terms and Conditions

Figure 5 VRR-Nuc Domain Phylogeny and Modelling (A) PRALINE alignment of VRR-Nuc structures against FAN1 homologs overlaid with PSIPRED secondary structure predictions with α helices in red and β sheets in blue. The secondary structure of psNUC derived from the crystal structure is shown beneath. The position of the modeled helical insertion is shown above in light pink. Conserved catalytic residues are highlighted above. (B) Phylogenetic tree showing VRR-Nuc domains, FAN1 orthologs, and archaeal HJC sequences. (C) In silico modeling of the hFAN1 VRR-Nuc domain from the side (top) and top (bottom) colored according to the VRR-Nuc domain crystal structures. The predicted helical insertion is in light pink. (D) Helical wheel Wenxian diagrams of helix 1 (left) and helix 2 (right) of the hFAN1 helical insertion clearly showing hydrophobic and hydrophilic faces of each helix. (E) Electrostatic surface representation of the hFAN1 VRR-Nuc domain model in the same orientation as the bottom image in (C) showing the negatively charged active site (red) and positively charged DNA-binding surface (blue). Cell Reports 2014 8, 84-93DOI: (10.1016/j.celrep.2014.06.001) Copyright © 2014 The Authors Terms and Conditions