Volume 22, Issue 13, Pages (July 2012)

Slides:



Advertisements
Similar presentations
Volume 20, Issue 18, Pages (September 2010)
Advertisements

Volume 21, Issue 10, Pages (May 2011)
Are Complex Behaviors Specified by Dedicated Regulatory Genes
Volume 25, Issue 6, Pages (March 2015)
Postcoital Finesse Neuron
Volume 15, Issue 11, Pages (June 2005)
Abdominal-B Neurons Control Drosophila Virgin Female Receptivity
Cholinergic Control of Synchronized Seminal Emissions in Drosophila
J. Dylan Clyne, Gero Miesenböck  Cell 
Volume 61, Issue 4, Pages (February 2009)
Pinky Kain, Anupama Dahanukar  Neuron 
Mechanosensitive Neurons on the Internal Reproductive Tract Contribute to Egg-Laying- Induced Acetic Acid Attraction in Drosophila  Bin Gou, Ying Liu,
Troy R. Shirangi, Allan M. Wong, James W. Truman, David L. Stern 
Activation of Latent Courtship Circuitry in the Brain of Drosophila Females Induces Male-like Behaviors  Carolina Rezával, Siddharth Pattnaik, Hania J.
translin Is Required for Metabolic Regulation of Sleep
Daniel T. Babcock, Christian Landry, Michael J. Galko  Current Biology 
Jung Hwan Kim, Xin Wang, Rosemary Coolon, Bing Ye  Neuron 
Genetic Identification and Separation of Innate and Experience-Dependent Courtship Behaviors in Drosophila  Yufeng Pan, Bruce S. Baker  Cell  Volume 156,
The Drosophila Female Aphrodisiac Pheromone Activates ppk23+ Sensory Neurons to Elicit Male Courtship Behavior  Hirofumi Toda, Xiaoliang Zhao, Barry J.
Starvation-Induced Depotentiation of Bitter Taste in Drosophila
Volume 25, Issue 6, Pages (March 2015)
Mating Regulates Neuromodulator Ensembles at Nerve Termini Innervating the Drosophila Reproductive Tract  Yael Heifetz, Moshe Lindner, Yuval Garini, Mariana F.
Melissa Hernandez-Fleming, Ethan W. Rohrbach, Greg J. Bashaw 
Opposing Dopaminergic and GABAergic Neurons Control the Duration and Persistence of Copulation in Drosophila  Michael A. Crickmore, Leslie B. Vosshall 
Volume 25, Issue 10, Pages (May 2015)
Volume 23, Issue 2, Pages (April 2018)
fruitless Splicing Specifies Male Courtship Behavior in Drosophila
Volume 23, Issue 20, Pages (October 2013)
Masayuki Koganezawa, Ken-ichi Kimura, Daisuke Yamamoto  Current Biology 
Volume 96, Issue 4, Pages e4 (November 2017)
Neuronal Control of Drosophila Courtship Song
Volume 23, Issue 13, Pages (July 2013)
Ascending SAG Neurons Control Sexual Receptivity of Drosophila Females
Volume 20, Issue 16, Pages (August 2010)
A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating  Woo Jae Kim, Lily Yeh Jan, Yuh Nung.
The Molecular Basis of Sugar Sensing in Drosophila Larvae
Masayuki Koganezawa, Daisuke Haba, Takashi Matsuo, Daisuke Yamamoto 
Circadian Pacemaker Neurons Change Synaptic Contacts across the Day
Dopaminergic Circuitry Underlying Mating Drive
Troy R. Shirangi, Allan M. Wong, James W. Truman, David L. Stern 
Neural Circuitry that Governs Drosophila Male Courtship Behavior
A PDF/NPF Neuropeptide Signaling Circuitry of Male Drosophila melanogaster Controls Rival-Induced Prolonged Mating  Woo Jae Kim, Lily Yeh Jan, Yuh Nung.
Volume 26, Issue 5, Pages (March 2016)
Female Contact Activates Male-Specific Interneurons that Trigger Stereotypic Courtship Behavior in Drosophila  Soh Kohatsu, Masayuki Koganezawa, Daisuke.
A Glio-Protective Role of mir-263a by Tuning Sensitivity to Glutamate
Volume 25, Issue 6, Pages (March 2015)
Let-7-Complex MicroRNAs Regulate the Temporal Identity of Drosophila Mushroom Body Neurons via chinmo  Yen-Chi Wu, Ching-Huan Chen, Adam Mercer, Nicholas S.
Benjamin J. Matthews, Wesley B. Grueber  Current Biology 
Clock and cycle Limit Starvation-Induced Sleep Loss in Drosophila
Bonnie Chu, Vincent Chui, Kevin Mann, Michael D. Gordon 
Kevin Mann, Michael D. Gordon, Kristin Scott  Neuron 
Volume 25, Issue 11, Pages (June 2015)
A Conserved Circadian Function for the Neurofibromatosis 1 Gene
Jia Huang, Weiwei Liu, Yi-xiang Qi, Junjie Luo, Craig Montell 
Single Serotonergic Neurons that Modulate Aggression in Drosophila
Martin Häsemeyer, Nilay Yapici, Ulrike Heberlein, Barry J. Dickson 
Volume 25, Issue 5, Pages (March 2015)
Volume 25, Issue 22, Pages (November 2015)
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Susan J Broughton, Toshihiro Kitamoto, Ralph J Greenspan 
Volume 24, Issue 7, Pages (March 2014)
Motor Control of Drosophila Courtship Song
Masayuki Koganezawa, Daisuke Haba, Takashi Matsuo, Daisuke Yamamoto 
Volume 28, Issue 6, Pages e3 (March 2018)
Volume 83, Issue 1, Pages (July 2014)
Jia Huang, Weiwei Liu, Yi-xiang Qi, Junjie Luo, Craig Montell 
Neural Circuitry that Evokes Escape Behavior upon Activation of Nociceptive Sensory Neurons in Drosophila Larvae  Jiro Yoshino, Rei K. Morikawa, Eri Hasegawa,
Volume 16, Issue 11, Pages (June 2006)
Masayuki Koganezawa, Ken-ichi Kimura, Daisuke Yamamoto  Current Biology 
Inverse Control of Turning Behavior by Dopamine D1 Receptor Signaling in Columnar and Ring Neurons of the Central Complex in Drosophila  Benjamin Kottler,
Presentation transcript:

Volume 22, Issue 13, Pages 1155-1165 (July 2012) Neural Circuitry Underlying Drosophila Female Postmating Behavioral Responses  Carolina Rezával, Hania J. Pavlou, Anthony J. Dornan, Yick-Bun Chan, Edward A. Kravitz, Stephen F. Goodwin  Current Biology  Volume 22, Issue 13, Pages 1155-1165 (July 2012) DOI: 10.1016/j.cub.2012.04.062 Copyright © 2012 The Authors Terms and Conditions

Figure 1 Behavioral Effects of mSP Expression in dsx Neurons in Virgin Females (A) Percentage receptivity (∗∗∗p < 0.0001, Fisher exact test). (B) Ovipositor extrusion during courtship (∗∗p < 0.001, ∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). (C) Percentage of time spent moving while being actively courted (∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). (D) Percentage of time spent moving in the absence of active courtship (∗p < 0.05, ∗∗p < 0.001, Kruskal-Wallis ANOVA test). (E) Egg laying (∗∗p < 0.001, Kruskal-Wallis ANOVA test). (F) Male courtship index of naive males (∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). Error bars indicate SEM. Genotypes indicate virgin females, unless stated otherwise. Target males were wild-type. n values shown in parentheses. Current Biology 2012 22, 1155-1165DOI: (10.1016/j.cub.2012.04.062) Copyright © 2012 The Authors Terms and Conditions

Figure 2 Knocking Down SPR Expression in dsx Neurons Reduces Postmating Behaviors in Mated Females (A) Percentage remating (∗∗∗p < 0.0001, Fisher exact test). (B) Ovipositor extrusion during courtship (∗∗p < 0.001, ∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). (C) Percentage of time spent moving while being actively courted (∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). (D) Percentage of time spent moving in the absence of active courtship (∗∗p < 0.001, Kruskal-Wallis ANOVA test). (E) Egg laying (∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). (F) Male courtship index of naive males (∗p < 0.05, ∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). Error bars indicate SEM. Genotypes indicate mated females, unless stated otherwise. Target males were wild-type. n values shown in parentheses. Current Biology 2012 22, 1155-1165DOI: (10.1016/j.cub.2012.04.062) Copyright © 2012 The Authors Terms and Conditions

Figure 3 Expression of SPR in dsx Cells Alone Is Sufficient to Rescue Postmating Responses in SPR-Deficient Line Df(1)SPR (A) Percentage remating (∗∗∗p < 0.0001, Fisher exact test). (B) Ovipositor extrusion during courtship (∗∗p < 0.001, ∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). (C) Percentage of time spent moving while being actively courted (∗∗p < 0.001, ∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). (D) Percentage of time spent moving in the absence of active courtship (∗p < 0.05, ∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). (E) Egg laying (∗p < 0.05, Kruskal-Wallis ANOVA test). (F) Male courtship index of naive males (∗∗p < 0.001, Kruskal-Wallis ANOVA test). Error bars indicate SEM. Genotypes indicate mated females, unless otherwise stated. Target males were wild-type. n values shown in parentheses. Current Biology 2012 22, 1155-1165DOI: (10.1016/j.cub.2012.04.062) Copyright © 2012 The Authors Terms and Conditions

Figure 4 dsx Neurons Are Part of the Circuitry Involved in Sensing SP (A) Colocalization of ppk- and dsx-expressing neurons in the female genital tract. ppk-eGFP was used to visualize ppk neurons (green), while dsx-expressing cells were visualized with dsxGal4 and UAS-redStinger (nRFP; magenta). Inset in (A) shows overlap between ppk- and dsx-expressing neurons at higher optical magnification. (B) Colocalization of fru- and dsx-expressing neurons in the female genital tract. fru neurons were visualized with LexAop-tdTomato::nls under the control of fruP1LexA (tdTomato; magenta); dsx neurons were visualized with dsxGal4 and UAS-pStinger (nGFP; green). Inset in (B) shows overlap between fru- and dsx-expressing neurons at higher magnification. (A and B) Scale bars represent 50 μm and 10 μm in insets. Seminal receptacle (Sr), spermathecae (Sp), and common oviduct (Ov) are indicated. (C) Schematic representation of the Drosophila female reproductive system showing different clusters of sensory neurons expressing ppk, fru and/or dsx. Each lateral oviduct possesses two ppk-expressing neurons [15], one of which is fru+ (blue dots), while the other is dsx+ (yellow dots). Within the uterus, the most anterior cluster (no. 1) comprises three bilateral dsx+/ppk+ neurons (yellow dots); the more posterior cluster (no. 2) comprises seven bilateral dsx+/ppk+ neurons, three of which also express fru (yellow and red dots respectively); while the most posterior cluster in the uterus (no. 3) appears to solely express ppk (green dots). (D and E) ppk-Gal80 expression reduces postmating behavioral responses in dsxGal4/UAS-mSP virgin females. (D) Percentage receptivity (∗∗∗p < 0.0001, Fisher exact test). (E) Egg laying (∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). Error bars indicate SEM. Genotypes indicate virgin females. Target males were wild-type. n values shown in parentheses. Current Biology 2012 22, 1155-1165DOI: (10.1016/j.cub.2012.04.062) Copyright © 2012 The Authors Terms and Conditions

Figure 5 Intersecting dsx Neurons Critical for Mediating Postmating Behavioral Responses (A) Schematic of FLP/FRT intersectional strategy employed to subdivide dsx circuitry. Crossing an ETFLP line with dsxGal4 allows expression of the selected effectors, UAS > stop > TNT or UAS > stop > TrpA1, in all intersecting neurons (ET∩dsx) where FLP has excised the transcriptional stop cassette (>stop >). (B–E) Effects of silencing intersecting ETFLP250/dsxGal4 neurons on postmating behaviors using UAS > stop > TNT. (B) Percentage remating (∗p < 0.01, Fisher exact test). (C) Ovipositor extrusion during courtship (∗∗p < 0.001, Kruskal-Wallis ANOVA test). (D) Male courtship latency in seconds (mean ± SEM, ∗p < 0.01, Kruskal-Wallis ANOVA test). (E) Male courtship index of naive males (∗∗p < 0.001, Kruskal-Wallis ANOVA test). Genotypes indicate mated females. Target males were wild-type. n values shown in parentheses. (F–H) Effects of artificially activating intersecting ETFLP250/dsxGal4 neurons on postmating behaviors using UAS > stop > TrpA. (F) Percentage receptivity (∗p < 0.01, ∗∗∗p < 0.0001, Fisher exact test). (G) Ovipositor extrusion during courtship (∗∗∗p < 0.0001, Kruskal-Wallis ANOVA test). (H) Male courtship latency (∗p < 0.01, Kruskal-Wallis ANOVA test). Experiments were performed at the permissive and restrictive temperatures of 22°C and 31°C, respectively. Error bars indicate SEM. Genotypes indicate virgin females. Target males were wild-type. n values shown in parentheses. Current Biology 2012 22, 1155-1165DOI: (10.1016/j.cub.2012.04.062) Copyright © 2012 The Authors Terms and Conditions

Figure 6 Characterization of Intersected dsx-Abg Neurons and Associated Projections (A) Epifluorescence of dsxGal4/UAS-mCD8::GFP female CNS with AbNvTk innervating the reproductive system. Scale bar represents 200 μm. (B–I) Intersection of dsxGal4- neurons and ETFLP250 expressing (B–E) UAS > stop > mCD8::GFP or (F–I) UAS > stop > nsyb-GFP in 5-day-old female CNSs and reproductive systems. (B) Female brain lacking mCD8::GFP expressing cell bodies, showing (B1) ascending neuronal projections innervating the SOG. (C) Female VNC showing ∼27 ETFLP 250/dsxGal4 cell bodies and projections. (C1) Higher magnification of Abg (C). (D–E) Demonstration of dsx neuronal projections to (D) the brain and (E) the reproductive system. Inset in (E) shows higher magnification of anterior uterus depicting lack of mCD8::GFP expression in dsx sensory neurons. (F and G) Presynaptic arborizations of intersecting dsx neurons within the (F and FI) posterior SOG and (G and G1) VNC. (H) Cervical connection showing four ascending projections innervating the posterior SOG. (I) Presynaptic arborizations in the internal genitalia, with (I1) a higher resolution of (I) detailing terminalia ramifying on the uterus. (J) Schematic of intersected dsx-Abg neurons depicting ascending neurons innervating the central brain, interneurons potentially conveying information to/from central circuits regulating female mating decisions, and descending neurons innervating the uterus. GFP (green); neuropil counterstained with anti-nC82 (magenta); reproductive systems counterstained with anti-ELAV (magenta). Abdominal ganglion (Abg), abdominal nerve trunk (AbNvTk), cervical connective (cc), seminal receptacle (Sr), spermathecae (Sp), and common oviduct (Ov) are indicated. (A–I) Ventral views; anterior, top. (B–I) Scale bars represent 50 μm. Scale bars in inset (E) represent 10 μm. Current Biology 2012 22, 1155-1165DOI: (10.1016/j.cub.2012.04.062) Copyright © 2012 The Authors Terms and Conditions