Yokohama National University H.Nakatsugawa, H.M.Jeong and K.Nagasawa

Slides:



Advertisements
Similar presentations
Level Splitting in Frustrated non-Kramers doublet systems Collin Broholm and Joost van Duijn Department of Physics and Astronomy Johns Hopkins University.
Advertisements

Thermoelectric properties in the series Ag x TiS 2 Tristan Barbier, Marine Beaumale, Oleg Lebedev, Emmanuel Guilmeau, Yohann Bréard, Antoine Maignan
Ivane Javakhishvili Tbilisi State University Institute of Condensed Matter Physics Giorgi Khazaradze M Synthesis and Magnetic Properties of Multiferroic.
Pressure-Induced Hydrogen-dominant metallic state in Aluminum Hydride HAGIHARA Toshiya Shimizu-group Igor Goncharenko et al., Phy. Rev. Lett. 100,
Chapter 4, Section 1 Ionic Bonds Thursday, December 3, 2009 Pages
1 1.Introduction 2.Electronic properties of few-layer graphites with AB stacking 3.Electronic properties of few-layer graphites with AA and ABC stackings.
Kitaoka lab Itohara Keita
Understanding the Giant Seebeck Coefficient of MnO 2 Nanoparticles Costel Constantin James Madison University James Madison University, October 2012.
The Double Pervoskite NaTbMnWO 6 : A Likely Multiferroic Material † Alison Pawlicki, ‡ A. S. Sefat, ‡ David Mandrus † Florida State University, ‡ Oak Ridge.
Short range magnetic correlations in spinel Li(Mn Co ) 2 O 4.
Electrons on a triangular lattice in Na-doped Cobalt Oxide Yayu Wang, Maw Lin Foo, Lu Li, Nyrissa Rogado, S. Watauchi, R. J. Cava, N.P.O. Princeton University.
Semiconductors and Diodes
THE SEEBECK COEFFICIENT Anthony Rice MTRL 286K 12/15/14.
Magnetic properties of a frustrated nickel cluster with a butterfly structure Introduction Crystal structure Magnetic susceptibility High field magnetization.
Applications and Processing of Ceramics
Thermoelectricity of Semiconductors
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
Copper based composite: L-Cop Cu High thermal Conductive Cu 2 O Low thermal expansive Anna malai Industrial Engineering Material Science.
Anomalous transport properties of the half-metallic ferromagnets Co 2 TiSi, Co 2 TiGe and Co 2 TiSn by Joachim Barth, Gerhard H. Fecher, Benjamin Balke,
Nanostructured Materials for Thermoelectric Power Generation Richard B. Kaner 1, Sabah K. Bux 1,3, and Jean-Pierre Fleurial 3 1 Department of Chemistry.
Magnetic, Transport and Thermal Properties of La 0.67 Pb 0.33 (Mn 1-x Co x )O y M. MIHALIK, V. KAVEČANSKÝ, S. MAŤAŠ, M. ZENTKOVÁ Institute of Experimental.
Ba 2 Si 3 CCHe 2 mistry. Introduction Laws of chemistry govern the structure and function of all living things!
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Magnetic phase transition in YbNi 4 Si. Point-contact spectroscopy of CEF in PrB 6 and NdB /2007 Mariana Vasiľová Outlook: -magnetic phase transition.
Lecture 3 (9/13/2006) Crystal Chemistry Part 2: Bonding and Ionic Radii.
Bond Types & Properties. Why bond?  Atoms form chemical bonds to reach an octet (s 2 p 6 ) in the valence shell  This creates a more stable molecule.
An Introduction to Fe-based superconductors
* 논 문 세 미 나 * Some effects of different additives on dielectric and piezoelectric properties of (Bi½Na½)TiO 3 - BaTiO 3 morphotropic-phase-boundary composition.
1 SHIMIZU Group ONODA Suzue Metallization and molecular dissociation of SnI 4 under pressure Ref: A.L. Chen, P.Y. Yu, M.P. Pasternak, Phys. Rev. B. 44,
Correlated Electron State in Ce 1-x Yb x CoIn 5 Stabilized by Cooperative Valence Fluctuations Brian M. Maple, University of California, San Diego, DMR.
Non-Fermi Liquid Behavior in Weak Itinerant Ferromagnet MnSi Nirmal Ghimire April 20, 2010 In Class Presentation Solid State Physics II Instructor: Elbio.
Introduction to Molecular Magnets Jason T. Haraldsen Advanced Solid State II 4/17/2007.
 Introduction of research project  Solidification of casting alloys  Stresses and strains  Crystal lattices  Diffraction  Neutrons  Experimental.
Ionic Bonding  Electrons are transferred  Electronegativity differences are generally greater than 1.7  The formation of ionic bonds is always exothermic!
Y.C. Hu 1, X.S. Wu 1, J.J. Ge 1, G.F. Cheng 2 1. Nanjing National Laboratory of Microstructures, Department of Physics, Nanjing University, Nanjing ,
Nucleus: Z = # protons = 1 for hydrogen to 94 for plutonium N = # neutrons Atomic mass A ≈ Z + N BOHR ATOM CHAPTER 2: ATOMIC STRUCTURE AND INTERATOMIC.
Chapter 7 in the textbook Introduction and Survey Current density:
Bonds How does an ionic bond form? How does a covalent bond form?
2. Sample Structure Effect of sintering temperature on dielectric loss, conductivity relaxation process and activation energy in Ni 0.6 Zn 0.4 Fe 2 O 4.
Electronic Structure Determination of CuRh 1-x Mg x O 2 using Soft X-Ray Spectroscopies.
Low Temperature Phase Transitions in GdPdAl
Topic Report YAG ceramic forming Chien-Chih Lai 07/ 19/ 2012.
Terbium Ion Doping in Ca3Co4O9: A Step Towards High-Performance Thermoelectric Materials NSF DMR # Shrikant Saini, Yinong Yin, Ashutosh Tiwari;
Electrical Properties of Materials
Pressure-induced spin-state and insulator-metal transition in Sr2CoO3F by first principles Xue-dong Ou and Hua Wu We have studied the electronic structure.
Al-based quasicrystal as a thermoelectric material
*Corresponding author, TEL :
Themoelectric properties of Pb doped [Ca2CoO3.1]0.62CoO2
The Electrochemical and Thermal Performances of Ca3Co4O9-δ as a cathode material for IT-SOFCs UCCS K. Nagasawaa, O. Mentreb, S. Daviero-Minaudb, N. Preuxb,
K. Nagasawa1), O. Mentré2), S. Daviero-Minaud2),
Crystal structure, electric and magnetic properties in NaxCoO2
Phase Boundary Mapping to Obtain n-type Mg3Sb2-Based Thermoelectrics
H.Nakatsugawa1), K.Nagasawa1) and Y.Okamoto2)
H.Nakatsugawa1), K.Nagasawa1) and Y.Okamoto2)
High temperature p - type and n - type thermoelectric properties of Pr1-xSrxFeO3 (0.1≦x≦0.9) Hiroshi Nakatsugawa 1,*, Itsuki Ishikawa 1, Miwa Saito 2,
Bonding in Metals OBJECTIVES:
Crystal structure, electric and magnetic properties in NaxCoO2
H.Nakatsugawa1), K.Nagasawa1) and Y.Okamoto2)
K.Nagasawa1), H.Nakatsugawa1) and Y.Okamoto2)
Yokohama National University Hiroshi Nakatsugawa
Volume 1, Issue 4, Pages (December 2017)
Masaki Kubota, Yosuke Watanabe, Hiroshi Nakatsugawa
Chemical Bonds.
* TEL : Observation of self-cooling on power MOSFET with silicon wafers using infrared thermography H.Nakatsugawa1,*,
Themoelectric properties of Pb and Sr doped Ca3Co4O9
Pressure-induced Superconductivity in CaFe2As2 -JPCM 20, (2008)
Fig. 5 Thermoelectric performance of pristine Bi2Se3 nanoplate and the heterostructure. Thermoelectric performance of pristine Bi2Se3 nanoplate and the.
Fig. 3 Magnetic and transport properties of ACoO3 (A = Ca, Sr).
Yokohama National University T.Ozaki and H.Nakatsugawa
B. RISCOB et al., Institute for Plasma Research
Presentation transcript:

Yokohama National University H.Nakatsugawa, H.M.Jeong and K.Nagasawa Thermoelectric properties and crystal structures in Y doped Ca3Co4O9 Yokohama National University H.Nakatsugawa, H.M.Jeong and K.Nagasawa

Outline Introduction Experimental Results and Discussion Summary Resistivity & Seebeck coefficient Thermoelectric property & crystal structure Magnetic susceptibility & valence state of Co Powder neutron diffraction data Modulation of Co-O bond distances Summary

Introduction 15mΩcm 130μV/K 0.98W/mK J.Sugiyama et al. : Phys.Rev.B 68 (2003) 134423 Y.Miyazaki et al : Solid State Ionics 172 (2004) 463-467

Experimental Solid-State reaction method ~ 85% Theoretical density Calcination in air at 920℃ Cold Isostatic Press (CIP) at 200MPa Sintered in O2 at 920℃ ~ 85% Theoretical density Magnetic properties Magnetic susceptibility at 10Oe : 2K ~ 350K Powder Neutron Diffraction Thermoelectric properties Rietveld refinement using PREMOS91 Crystal structures using PRJMS Interatomic distance plots using MODPLR Electrical resistivity : 80K ~ 800K Seebeck coefficient : 80K ~ 800K

Resistivity & Seebeck coefficient

Thermoelectric property & crystal structure

Magnetic susceptibility & valence state of Co [(Ca0.99Y0.01)2CoO3.20]0.62CoO2 [(Ca0.98Y0.02)2CoO3.21]0.62CoO2 [(Ca0.97Y0.03)2CoO3.18]0.62CoO2 [(Ca0.96Y0.04)2CoO3.21]0.62CoO2

Powder neutron diffraction data:pre-modulation Rwp = 12.39% x=0.02 0050 0010 0030 0020

Powder neutron diffraction data:after-modulation Rwp = 5.91% x=0.02 0050 0010 0030 0020

Modulation of Co-O bond distances (1) x=0 x=0.01 x=0.02 x=0.03 x=0.04

Modulation of Co-O bond distances (2) x=0 x=0.01 x=0.02 x=0.03 x=0.04

Modulation of Co-O bond distances (3) x=0 x=0.01 x=0.02 x=0.03 x=0.04

Y-doping is an effective method to improve TE performance of Ca3Co4O9 Summary The valence state of Co ions in Y doped Ca3Co4O9 Co3.2+ in CoO2 sheet Co3.6+ in RS-type BL A broad minimum at 100K and a broad maximum at 350K ~ 600K in ρ(T) curve Incommensurate SDW transition below TSDWon = 100K Spin-state transition below TSSon = 600K Y-doping is an effective method to improve TE performance of Ca3Co4O9