Linear Programming – Sensitivity Analysis

Slides:



Advertisements
Similar presentations
Agenda of Week VII. LP V LP Application 2 Time assignment Beggar family LINGO illustration Understanding LP LP interpretation Week 6 1 LP Sensitivity Analysis.
Advertisements

Understanding optimum solution
Linear Programming – Sensitivity Analysis How much can the objective function coefficients change before the values of the variables change? How much can.
Introduction to Sensitivity Analysis Graphical Sensitivity Analysis
What is sensitivity analysis? Why do we perform sensitivity analysis? How far do we like to perform sensitivity analysis? In an LP sensitivity analysis,
1/53 Slide Linear Programming: Sensitivity Analysis and Interpretation of Solution n Introduction to Sensitivity Analysis n Graphical Sensitivity Analysis.
SENSITIVITY ANALYSIS.
Optimization Models Module 9. MODEL OUTPUT EXTERNAL INPUTS DECISION INPUTS Optimization models answer the question, “What decision values give the best.
SOLVING LINEAR PROGRAMS USING EXCEL Dr. Ron Lembke.
LP EXAMPLES.
Chapter 3 Linear Programming: Sensitivity Analysis and Interpretation of Solution MT 235.
Basic Linear Programming Concepts Lecture 2 (4/1/2015)
Exam Feb 28: sets 1,2 Set 2 due Thurs. LP SENSITIVITY Ch 3.
1 1 Slide LINEAR PROGRAMMING Introduction to Sensitivity Analysis Professor Ahmadi.
Linear Programming.
Solver Linear Problem Solving MAN Micro-computers & Their Applications.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Kerimcan OzcanMNGT 379 Operations Research1 LP: Sensitivity Analysis and Interpretation of Solution Chapter 3.
Computational Methods for Management and Economics Carla Gomes
1 The Role of Sensitivity Analysis of the Optimal Solution Is the optimal solution sensitive to changes in input parameters? Possible reasons for asking.
Readings Readings Chapter 3
Operations Research Assistant Professor Dr. Sana’a Wafa Al-Sayegh 2 nd Semester ITGD4207 University of Palestine.
Managerial Decision Making and Problem Solving
1 LINEAR PROGRAMMING Introduction to Sensitivity Analysis Professor Ahmadi.
Chapter 6 Supplement Linear Programming.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Linear Programming: Sensitivity Analysis and Interpretation of Solution Pertemuan 5 Matakuliah: K0442-Metode Kuantitatif Tahun: 2009.
Sensitivity Analysis Consider the CrossChek hockey stick production problem:   Management believes that CrossChek might only receive $120 profit from the.
1 The Dual in Linear Programming In LP the solution for the profit- maximizing combination of outputs automatically determines the input amounts that must.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Professional software packages such as The WinQSB and LINDO provide the following LP information: Information about the objective function: –its optimal.
Chapter 6 Simplex-Based Sensitivity Analysis and Duality
1 1 Slide © 2005 Thomson/South-Western Simplex-Based Sensitivity Analysis and Duality n Sensitivity Analysis with the Simplex Tableau n Duality.
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
LP Examples Solid Waste Management. A SOLID WASTE PROBLEM Landfill Maximum capacity (tons/day) Cost of transfer to landfill ($/ton) Cost of disposal at.
Sensitivity Analysis Introduction to Sensitivity Analysis
LP SENSITIVITY. Graphical Sensitivity Analysis A.Objective Function B.Left-hand side of constraint C.Right-hand side of constraint.
CDAE Class 16 Oct. 18 Last class: 3. Linear programming and applications Quiz 4 Today: Result of Quiz 4 3. Linear programming and applications Group.
Operations Research By: Saeed Yaghoubi 1 Graphical Analysis 2.
6s-1Linear Programming William J. Stevenson Operations Management 8 th edition.
1 2 Linear Programming Chapter 3 3 Chapter Objectives –Requirements for a linear programming model. –Graphical representation of linear models. –Linear.
Practice: Given the following Sensitivity Analysis Report
Linear Programming.
Solving Linear Program by Simplex Method The Concept
St. Edward’s University
Chapter 19 – Linear Programming
Limiting factor analysis
10CS661 OPERATION RESEARCH Engineered for Tomorrow.
Chapter 5 Sensitivity Analysis: An Applied Approach
Graphical Analysis – the Feasible Region
Chapter 5 Simplex-Based Sensitivity Analysis and Duality
What is sensitivity analysis? Why do we perform sensitivity analysis?
به نام خدا آشنایی با LINDO Software استاد :‌ راحله خاندوزی.
Graphical Sensitivity Analysis and Computer Solution
Chapter 3 The Simplex Method and Sensitivity Analysis
Duality Theory and Sensitivity Analysis
Sensitivity Analysis and
Basic Linear Programming Concepts
St. Edward’s University
Solving Linear Programming Problems: Asst. Prof. Dr. Nergiz Kasımbeyli
PRODUKTIONSPLANUNGS-BEISPIEL 6.1
Sensitivity.
LP Example of Soil Stability
Lecture 4 Part I Mohamed A. M. A..
Section 3.4 Sensitivity Analysis.
Optimization Models Module 9.
Presentation transcript:

Linear Programming – Sensitivity Analysis How much can the objective function coefficients change before the values of the variables change? How much can the right hand side of the constraints change you obtain a different basic solution? How much value is added/reduced to the objective function if I have a larger/smaller quantity of a scarce resource?  

Linear Programming – Sensitivity Leo Coco Problem Max 20x1 + 10 x2 s.t. x1 - x2 <= 1 3x1 + x2 <= 7 x1, x2 >= 0 Solution: x1 = 0, x2 = 7 Z = 70   Issue: How much can you change a cost coefficient without changing the solution?

Sensitivity – Change in cost coefficient What if investment 2 only pays $5000 per share? Max 20x1 + 5 x2 s.t. x1 - x2 <= 1 3x1 + x2 <= 7 x1, x2 >= 0 New objective function isobar Optimal solution is now the point (2,1). Issue: At what value of C2 does solution change?

Sensitivity – Change in cost coefficient Issue: At what value of C2 does solution change? Ans.: When objective isobar is parallel to the binding constraint. Max 20x1 + C2* x2 s.t. 3x1 + x2 <= 7 3/1 = 20/C2 or C2 = 20/3 or 6.67

Sensitivity – Change in cost coefficient Lindo Sensitivity Analysis Output – Leo Coco Problem LP OPTIMUM FOUND AT STEP 1 OBJECTIVE FUNCTION VALUE 1) 70.00000 VARIABLE VALUE REDUCED COST X1 0.000000 10.000000 X2 7.000000 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 1) 8.000000 0.000000 2) 0.000000 10.000000 NO. ITERATIONS= 1 RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 20.000000 10.000000 INFINITY X2 10.000000 INFINITY 3.333333 RIGHTHAND SIDE RANGES ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 1 1.000000 INFINITY 8.000000 2 7.000000 INFINITY 7.000000

Sensitivity – Change in right hand side What if only 5 hours available in time constraint? Max 20x1 + 5 x2 s.t. x1 - x2 <= 1 3x1 + x2 <= 5 x1, x2 >= 0 New time constraint. Optimal solution is now the point (5,0). But, basis does not change. Issue: At what value of the r.h.s. does the basis change?

Sensitivity – Change in right hand side Issue: At what value of the r.h.s. does the basis change? Max 20x1 + 5 x2 s.t. x1 - x2 <= 1 3x1 + x2 <= ? x1, x2 >= 0 Basis changes at this constraint. x2 becomes non-basic at the origin. Or, when the constraint is: 3x1 + x2 < 0

Sensitivity – Change in right hand side Lindo Sensitivity Analysis Output – Leo Coco Problem LP OPTIMUM FOUND AT STEP 1 OBJECTIVE FUNCTION VALUE 1) 70.00000 VARIABLE VALUE REDUCED COST X1 0.000000 10.000000 X2 7.000000 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 1) 8.000000 0.000000 2) 0.000000 10.000000 NO. ITERATIONS= 1 RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 20.000000 10.000000 INFINITY X2 10.000000 INFINITY 3.333333 RIGHTHAND SIDE RANGES ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 1 1.000000 INFINITY 8.000000 2 7.000000 INFINITY 7.000000

Sensitivity – Shadow or Dual Prices Issue, how much are you willing to pay for one additional unit of a limited resource? Max 20x1 + 10 x2 s.t. x1 - x2 <= 1 (budget constraint 3x1 + x2 <= 7 (time constraint x1, x2 >= 0 Knowing optimal solution is (0,7) and time constraint is binding: Not willing to increase budget constraint (shadow price is $0). If time constraint increase by one unit (to 8), solution will change to (0,8) and Z=80. Therefore should be willing to pay up to $10(000s) for each additional unit of time constraint.

Sensitivity – Change in right hand side Lindo Sensitivity Analysis Output – Leo Coco Problem LP OPTIMUM FOUND AT STEP 1 OBJECTIVE FUNCTION VALUE 1) 70.00000 VARIABLE VALUE REDUCED COST X1 0.000000 10.000000 X2 7.000000 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 1) 8.000000 0.000000 2) 0.000000 10.000000 NO. ITERATIONS= 1 RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 20.000000 10.000000 INFINITY X2 10.000000 INFINITY 3.333333 RIGHTHAND SIDE RANGES ROW CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 1 1.000000 INFINITY 8.000000 2 7.000000 INFINITY 7.000000

Linear Programming – Sensitivity Analysis What if more than one coefficient is changed?: 100% Rule (for objective function coefficients): if <= 1, the optimal solution will not change, where is the actual increase (decrease) in the coefficient and is the maximum allowable increase (decrease) from the sensitivity analysis.  

Linear Programming – Sensitivity Analysis Example obj. function coefficient changes

Linear Programming – Sensitivity Analysis Simultaneous variations in multiple coefficients: 100% Rule (for RHS constants): if <= 1, the optimal basis and product mix will not change, where is the actual increase (decrease) in the coefficient and is the maximum allowable increase (decrease) from the sensitivity analysis.  

Linear Programming – Sensitivity Analysis Example RHS constant changes