Unit 2. Day 8..

Slides:



Advertisements
Similar presentations
Fractions. ADDING FRACTIONS  Build each fraction so that the denominators are the same  ADD the numerators  Place the sum of the two numerators on.
Advertisements

Operations on Rational Expressions Digital Lesson.
One step equations Add Subtract Multiply Divide By: Jennifer Del-Castillo John F. Kennedy Middle School.
Adding/Subtracting Fractions (like denominators) Adding/Subtracting Fractions (unlike denominators) Adding/Subtracting Decimals Multiplying/Dividing Fractions.
9.2 Adding and Subtracting Rational Expressions Least Common Denominator of a polynomial of a polynomial.
Section 8.8.  In this lesson you will learn to add, subtract, multiply, and divide rational expressions. In the previous lesson you combined a rational.
Adding, Subtracting, Multiplying, & Dividing Rational Expressions
Operations on Rational Expressions. Rational expressions are fractions in which the numerator and denominator are polynomials and the denominator does.
Adding & Subtracting Whole Number and Fractions
Measurement Multiplying and Dividing Fractions.  We can add and subtract fractions with the same (common) denominator easily. Adding and Subtracting.
Chapter 4 Notes 7 th Grade Math Adding and Subtracting Fractions10/30 2. Find a common denominator 3. Add or subtract the numerators Steps 4. Keep the.
Lesson 8-2: Adding and Subtracting Rational Expressions.
Addition Multiplication Subtraction Division. 1.If the signs are the same, add the numbers and keep the same sign = = If the.
Warm-up 6-1 Lesson 6-1 Simplifying Rational Expressions.
Objective Standard 15.0 I can use the rules of exponents and factorization to simplify the multiplication and division of rational expressions.
Intro to Math… Lesson 1. 4 Fundamental Operations Of Math Example: adding + subtracting - multiplying x dividing ÷
Rational Expressions and Equations

Rational Numbers Adding Like Fractions
Applying GCF and LCM to Fraction Operations
Algebra 1 Notes: Lesson 2-2 Rational Numbers
Subtraction Addition Multiplication Fractions Division 1pt 1 pt 1 pt
Multiply the following rational expressions. Show work!
Focus 4 Fraction Operations
Adding and Subtracting Integers is like …
Unit 2. Day 4..
Operations on Rational Expressions
Unit 2. Day 10..
Unit 2. Day 1..
Opening Activity Complete the following problems in your spiral on your “Multiplying Positive & Negative Integers” page. Write both the expression.
Objective Solve equations in one variable that contain more than one operation.
Unit 1. Day 8..
Unit 1. Day 2..
Unit 1. Day 5..
Domain 1: The Number System
Unit 1. Day 1..
Unit 1. Day 4..
Unit 1. Day 7..
Unit 3. Day 2..
Unit 2. Day 6..
Simplify: 7
Unit 2. Day 5..
Unit 3. Day 1..
Welcome to Jeopardy! Rational Expressions.
Lesson 1-5 Solving Equations with Rational Numbers
Unit 2. Day 4..
Unit 2. Day 8..
I can divide integers at least at 80% mastery.
I Can write fractions as terminating or repeating decimals and write decimals as fractions at least at 80% proficiency. 7.NS.2 Apply and extend previous.
Unit 2. Day 4..
Unit 3. Day 22..
Grade 5 Representing Decimal Thousandths Dividing with Fractions
Unit 2. Day 5..
Unit 2. Day 11..
Unit 2. Day 7..
Divide the number in C by 10.
Unit 2. Day 14..
Objective Solve equations in one variable that contain more than one operation.
Unit 1. Day 9..
Unit 2. Day 14..
Simplifying Rational Expressions
Unit 2. Day 10..
Unit 2. Day 13..
Unit 2. Day 12..
Module 4: MULTIPLYING and DIVIDING FRACTIONS
Starter (On your own paper) Solve for x. 4
Add Subtract Multiply Divide
Math-7 NOTES 1) 3x = 15 2) 4x = 16 Multiplication equations:
Add Subtract Multiply Divide
Presentation transcript:

Unit 2. Day 8.

Please get out paper for today’s lesson Name Date Period -------------------------------------------------------- Topic: Adding & Subtracting Rational Numbers 7.NS.A.2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers

4th, 5th, & 6th grade

Example A: Add or subtract. Write in simplest form. 5 6 + 1 4 10 12 3 12 13 12 1 1 12 = + = 𝑜𝑟 6 4 5 6 10 12 1 4 3 12   : 6 , 12 , 18 , 24 , 30 , 36 , 42 , 48 , 54 , 60 , 66 , 72 , 78 : 4 , 8 , 12 , 16 , 20 , 24 , 28 , 32 , 36 , 40 , 44 , 48 , 52

Example B*: Add or subtract. Write in simplest form. 8 9 − 5 6 16 18 15 18 18 1 = − = 9 6 8 9 16 18 5 6 15 18   : 9 , 18 , 27 , 36 , 45 , 54 , 63 , 72 , 81 , 90 , 99 , 108 , 117 : 6 , 12 , 18 , 24 , 30 , 36 , 42 , 48 , 54 , 60 , 66 , 72

7th grade

Example C: 5 14 − 5 8 20 56 35 56 −15 56 −1∙3∙5 − 15 56 = − = = = 14 8 2∙2∙2∙7 5 14 20 56 5 8 35 56   : 14 , 28 , 42 , 56 , 70 , 84 , 98 , 112 , 126 , 140 , 154 , : 8 , 16 , 24 , 32 , 40 , 48 , 56 , 64 , 72 ,

− 5 8 + 5 24 Example D: − 6 8 + − 3 9 Example E:

Example D*: − 5 8 + 5 24 − 15 24 + 5 24 −10 24 −1∙2∙5 −5 12 = = = = 8 24 2∙2∙2∙3 − 5 8 − 24 15 5 24 5 24   : 8 , 16 , 24 , 32 , 40 , 48 , 56 , 64 , 72 , 80 , 88 , 96 , 104 : 24 , 48 , 72 , 96 , 120 , 144 , 168 , 192 , 216 , 240

: : : : Example E*: − 6 8 − 72 54  − 6 8 + − 3 9 − 13 12 −13 12 = = 8 − 72 54  − 6 8 + − 3 9 + − 54 72 − 24 72 −78 −1∙2∙3∙13 − 13 12 −13 12 = = 72 = = 8 9 2∙2∙2∙3∙3 − 3 9 − 72 24  −1 1 12 : 8 , 16 , 24 , 32 , 40 , 48 , 56 , 64 , 72 , 80 : 9 , 18 , 27 , 36 , 45 , 54 , 63 , 72 + − 1 3 + − 3 4 − 12 9 − 3 4 − 6 8 − 3 9 − 9 12 − 13 12 −13 12 − 4 12 = =  4 3 − 1 3 − 12 4  −1 1 12 : 4 , 8 , 12 , 16 , 20 , 24 : 3 , 6 , 9 , 12

8 16 − 4 32 5 15 − 12 20 − 8 9 − − 5 6 Example F*: Example G*: Example H*:

Example F: + − 8 9 − − 5 6 − 16 18 + 15 18 − 1 18 = = 9 6 5 6 15 18 − 8 9 − 18 16   : 9 , 18 , 27 , 36 , 45 , 54 , 63 , 72 , 81 , 90 , 99 , 108 , 117 : 6 , 12 , 18 , 24 , 30 , 36 , 42 , 48 , 54 , 60 , 66 , 72

Example G*: 8 16 16 32  8 16 − 4 32 16 32 − 4 32 12 32 2∙2∙3 3 8 = = = = 16 32 2∙2∙2∙2∙2 4 32 4 32  : 16 , 32 , 48 , 64 , 80 , 96 : 32 , 64 , 96 , 128 1 2 − 1 8 1 2 4 8 4 8 − 1 8 3 8 = =  2 8 : 1 8 1 8 2 , 4 , 6 , 8 , 10 , 12  : 8 , 16 , 24 , 32

Example H*: 5 15 20 60  5 15 − 12 20 20 60 − 36 60 −16 −4 15 −1∙2∙2∙2∙2 = = 60 = = 15 20 2∙2∙3∙5 12 20 36 60  : 15 , 30 , 45 , 60 , 75 , 90 : 20 , 40 , 60 , 80 5 15 1 3 9 15 3 5 1 3 5 15 5 15 − 9 15 −4 − = =  15 3 5 3 5 9 15  : 3 , 6 , 9 , 12 , 15 , 18 : 5 , 10 , 15 , 20