Chapter -5 PUBLIC-KEY CRYPTOGRAPHY AND RSA

Slides:



Advertisements
Similar presentations
Cryptography and Network Security Chapter 9
Advertisements

Dr. Lo’ai Tawalbeh Summer 2007 Chapter 9 – Public Key Cryptography and RSA Dr. Lo’ai Tawalbeh New York Institute of Technology (NYIT) Jordan’s Campus INCS.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings.
Cryptography and Network Security Chapter 9. Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively.
Public Key Cryptography and the RSA Algorithm
Cryptography1 CPSC 3730 Cryptography Chapter 9 Public Key Cryptography and RSA.
Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications.
Dr.Saleem Al_Zoubi1 Cryptography and Network Security Third Edition by William Stallings Public Key Cryptography and RSA.
1 Pertemuan 08 Public Key Cryptography Matakuliah: H0242 / Keamanan Jaringan Tahun: 2006 Versi: 1.
Cryptography and Network Security Chapter 9 5th Edition by William Stallings Lecture slides by Lawrie Brown.
The RSA Algorithm JooSeok Song Tue.
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
“RSA”. RSA  by Rivest, Shamir & Adleman of MIT in 1977  best known & widely used public-key scheme  RSA is a block cipher, plain & cipher text are.
Introduction to Public Key Cryptography
 Introduction  Requirements for RSA  Ingredients for RSA  RSA Algorithm  RSA Example  Problems on RSA.
Prime Numbers Prime numbers only have divisors of 1 and self
Public Key Cryptography and the RSA Algorithm Cryptography and Network Security by William Stallings Lecture slides by Lawrie Brown Edited by Dick Steflik.
Applied Cryptography (Public Key) RSA. Public Key Cryptography Every Egyptian received two names, which were known respectively as the true name and the.
Information Security Principles & Applications
Network Security Lecture 17 Presented by: Dr. Munam Ali Shah.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
Public Key Cryptography and RSA” Dr. Monther Aldwairi New York Institute of Technology- Amman Campus 11/9/2009 INCS 741: Cryptography 11/9/20091Dr. Monther.
Private-Key Cryptography  traditional private/secret/single key cryptography uses one key  shared by both sender and receiver  if this key is disclosed.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
Public Key Cryptography. symmetric key crypto requires sender, receiver know shared secret key Q: how to agree on key in first place (particularly if.
1 Public-Key Cryptography and Message Authentication.
Computer and Network Security Rabie A. Ramadan Lecture 6.
PUBLIC-KEY CRYPTOGRAPH IT 352 : Lecture 2- part3 Najwa AlGhamdi, MSc – 2012 /1433.
Cryptography & Network Security : Topic Seminar Description & Analysis Madhava.N 1RV06SCN05 2 nd Semester M.Tech CNE RVCE RSA ALGORITHM.
Cryptography and Network Security Public Key Cryptography and RSA.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Chapter 3 – Public Key Cryptography and RSA (A). Private-Key Cryptography traditional private/secret/single-key cryptography uses one key shared by both.
Chapter 9 Public Key Cryptography and RSA. Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender.
Fall 2002CS 395: Computer Security1 Chapter 9: Public Key Cryptography.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings Lecture slides by Lawrie Brown.
Cryptography and Network Security Chapter 9 Fourth Edition by William Stallings.
Cryptography and Network Security Third Edition by William Stallings Lecture slides by Lawrie Brown.
By Marwan Al-Namari & Hafezah Ben Othman Author: William Stallings College of Computer Science at Al-Qunfudah Umm Al-Qura University, KSA, Makkah 1.
Chapter 9 – Public Key Cryptography and RSA Every Egyptian received two names, which were known respectively as the true name and the good name, or the.
CSCE 715: Network Systems Security Chin-Tser Huang University of South Carolina.
CSEN 1001 Computer and Network Security Amr El Mougy Mouaz ElAbsawi.
Cryptography and Network Security Chapter 9 Fifth Edition by William Stallings Lecture slides by Lawrie Brown.
Lecture 5 Asymmetric Cryptography. Private-Key Cryptography Traditional private/secret/single key cryptography uses one key Shared by both sender and.
CS480 Cryptography and Information Security
Asymmetric Encryption
Visit for more Learning Resources
Lecture 5 RSA DR. Nermin Hamza.
G. Pullaiah College of Engineering and Technology
Cryptography and Network Security
Chapter 9 – Public Key Cryptography and RSA
Cryptography and Network Security Chapter 9
Public Key Cryptography and the RSA Algorithm
RSA Algorithm Cryptography and Network Security by William Stallings
Cryptography and Network Security
Public Key Encryption and the RSA Algorithm
The RSA Algorithm JooSeok Song Tue.
Private-Key Cryptography
Cryptography and Network Security Chapter 9
ICS 353: Design and Analysis of Algorithms
The RSA Algorithm JooSeok Song Tue.
Cryptography and Network Security Chapter 9
“Public Key Cryptography” & “RSA”
Cryptography and Network Security Chapter 9
NET 311 Information Security
Cryptography and Network Security
Cryptography and Network Security Chapter 9
Cryptography and Network Security Chapter 9
Cryptography and Network Security Chapter 9
Basic of Modern Cryptography
Cryptography and Network Security Chapter 9
Presentation transcript:

Chapter -5 PUBLIC-KEY CRYPTOGRAPHY AND RSA Cryptography Techniques (CNET-326)

Private-Key Cryptography traditional private/secret/single key cryptography uses one key shared by both sender and receiver if this key is disclosed communications are compromised also is symmetric, parties are equal hence does not protect sender from receiver forging a message & claiming is sent by sender So far all the cryptosystems discussed, from earliest history to modern times, have been private/secret/single key (symmetric) systems. All classical, and modern block and stream ciphers are of this form, and still rely on the fundamental building blocks of substitution and permutation (transposition).

Public-Key Cryptography probably most significant advance in the 3000 year history of cryptography uses two keys – a public & a private key asymmetric since parties are not equal uses clever application of number theoretic concepts to function complements rather than replaces private key crypto Will now discuss the radically different public key systems, in which two keys are used. The development of public-key cryptography is the greatest and perhaps the only true revolution in the entire history of cryptography. It is asymmetric, involving the use of two separate keys, in contrast to symmetric encryption,which uses only one key. Anyone knowing the public key can encrypt messages or verify signatures, but cannot decrypt messages or create signatures, counter-intuitive though this may seem. It works by the clever use of number theory problems that are easy one way but hard the other. Note that public key schemes are neither more nor less secure than private key (security depends on the key size for both), nor do they replace private key schemes (they are too slow to do so), rather they complement them. Both also have issues with key distribution, requiring the use of some suitable protocol.

Public-Key Cryptography

Public-Key Applications

RSA Published By Rivest, Shamir & Adleman of MIT in 1977 best known & widely used public-key scheme based on exponentiation in a finite (Galois) field over integers modulo a prime nb. exponentiation takes O((log n)3) operations (easy) uses large integers (eg. 1024 bits) security due to cost of factoring large numbers nb. factorization takes O(e log n log log n) operations (hard) RSA is the best known, and by far the most widely used general public key encryption algorithm, and was first published by Rivest, Shamir & Adleman of MIT in 1978 [RIVE78]. Since that time RSA has reigned supreme as the most widely accepted and implemented general-purpose approach to public-key encryption. It is based on exponentiation in a finite (Galois) field over integers modulo a prime, using large integers (eg. 1024 bits). Its security is due to the cost of factoring large numbers.

RSA Key Setup RSA key setup is done once (rarely) when a user establishes (or replaces) their public key, using the steps as shown. The exponent e is usually fairly small, just must be relatively prime to ø(n). Need to compute its inverse mod ø(n) to find d. It is critically important that the factors p & q of the modulus n are kept secret, since if they become known, the system can be broken. Note that different users will have different moduli n.

RSA Encryption & Decryption

RSA Encryption & Decryption

RSA Example - Key Setup Select primes: p=17 & q=11 Compute n = pq =17 x 11=187 Compute ø(n)=(p–1)(q-1)=16 x 10=160 Select e: gcd(e,160)=1; choose e=7 Determine d: de=1 mod 160 and d < 160 Value is d=23 since 23x7=161= 10x160+1 Publish public key PU={7,187} Keep secret private key PR={23,187} Here walk through example RSA key generation using “trivial” sized numbers. Selecting primes requires the use of a primality test. Finding d as inverse of e mod ø(n) requires use of Euclid’s Inverse algorithm (see Ch4)

RSA Example - En/Decryption sample RSA encryption/decryption is: given message M = 88 (nb. 88<187) encryption: C = 887 mod 187 = 11 decryption: M = 1123 mod 187 = 88 Then show that the encryption and decryption operations are simple exponentiations mod 187. Rather than having to laborious repeatedly multiply, can use the "square and multiply" algorithm with modulo reductions to implement all exponentiations quickly and efficiently (see next).

RSA Security

RSA Exercises