DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE

Slides:



Advertisements
Similar presentations
Results from first tests of TRD prototypes for CBM DPG Frühjahrstagung Münster 2011 Pascal Dillenseger Institut für Kernphysik Frankfurt am Main.
Advertisements

1 Annealing studies of Mimosa19 & radiation hardness studies of Mimosa26 Dennis Doering* 1, Samir Amar-Youcef 1,3,Michael Deveaux 1, Melissa Domachowski.
Supported by GSI, BMBF (06FY9099I), EU (FP7-WP26) A Prototype Readout System for the MVD of the CBM Experiment Christoph Schrader for the CBM-MVD Collaboration.
„Prototyping the CBM Micro Vertex Detector” Group report Michal Koziel Goethe-Univiersität, Frankfurt for the CBM-MVD collaboration 1.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Random Telegraph Signal (RTS) in CMOS Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline Reminder: The operation principle of.
Research and Development for the HFT at STAR Leo Greiner BNL DAC 03/15/2006.
L. Greiner1PXL Sensor and RDO review – 06/23/2010 STAR Heavy Flavor Tracker Overview With parameters pertinent to the PXL Sensor and RDO design.
CMOS sensors: a short introduction. 1.What’s a CMOS sensor? A new technique for pixel detectors.
Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration.
Status of the Prototype of the CBM Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration.
The CBM-MVD prototype: Realization & beam test Michal Koziel Goethe-Universität, Frankfurt 1 Detector Workshop March 25th-26th 2013 at.
Mathieu Goffe EUDET JRA1 meeting, DESY Wednesday 30 January 2008 IPHC, 23 rue du Loess BP 28, 67037, Strasbourg Cedex 02, France.
EUDET Annual Meeting, Munich, October EUDET Beam Telescope: status of sensor’s PCBs Wojciech Dulinski on behalf.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
The MAPS sensor (reminder) MAPS with integrated data sparsification
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
Ultimate Design Review G. Bertolone, C. Colledani, A. Dorokhov, W. Dulinski, G. Dozière, A. Himmi, Ch. Hu-Guo, F. Morel, H. Pham, I. Valin, J. Wang, G.
November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
Status of the Micro Vertex Detector of the CBM Experiment N. Bialas 1, N. Chon-Sen 2, G. Claus 2, C. Colledani 2, R. De Masi 2, M. Deveaux 1, D. Doering.
MIMOSA-26 and its readout
Institute for Nuclear Physics, University of Frankfurt C. Schrader; Sept. 2011, Mont Sainte Odile, Workshop Institute for Nuclear Physics, University of.
Status of the R&D on MAPS in Strasbourg and Frankfurt Outline: Operation principle of MAPS (a reminder) Fast readout Radiation hardness System integration.
TRBnet for the CBM MVD-Prototype Borislav Milanović In cooperation with: J. Michel, M. Deveaux, S. Seddiki, M. Traxler, S. Youcef, C. Schrader, I. Fröhlich,
Radiation tolerance of Monolithic Active Pixel Sensors (MAPS) Outline: Operation principle of MAPS Radiation tolerance against ionising doses (update)
Irfu saclay 3D-MAPS Design IPHC / IRFU collaboration Christine Hu-Guo (IPHC) Outline  3D-MAPS advantages  Why using high resistivity substrate  3 types.
ILC Vertex Tracker Ladder Studies At LBNL M Battaglia, D Contarato, L Greiner, D Shuman LBNL, Berkeley.
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
Institute for Nuclear Physics, University of Frankfurt 1 A concept for the MVD-DAQ C.Schrader, S. Amar-Youcef, N. Bialas, M. Deveaux, I.Fröhlich, J. Michel,
C.Schrader; Oct 2008, CBM Collaboration Meeting, Dubna, Russia R/O concept of the MVD demonstrator C.Schrader, S. Amar-Youcef, A. Büdenbender, M. Deveaux,
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
1 Radiation damage effects in Monolithic Active Pixel Sensors Implemented in an 0.18µm CMOS process Dennis Doering, Goethe-University Frankfurt am Main.
, T. Tischler, CBM Collaboration Meeting, GSI Status MVD demonstrator: mechanics & integration T.Tischler, S. Amar-Youcef, M. Deveaux, D. Doering,
, T. Tischler, CBM Collaboration Meeting, Split Status MVD Demonstrator: System Integration T.Tischler, S. Amar-Youcef, M. Deveaux, D. Doering,
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
Feasibility studies of open charm reconstruction with pile up 1. General simulations with pile up 2. Open charm reconstruction Christina Dritsa Outline:
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
FEE-2011, Bergamo University 1 Novel packaging methods for ultra-thin monolithic sensors ladders construction Wojciech.
A Silicon vertex tracker prototype for CBM Material for the FP6 Design application.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
1 Heavy flavor physics and  Vertex detector. 2 People involved RNC Group Howard Wieman Hans-Georg Ritter Fred Bieser (Lead Electronic Engineer) Howard.
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
Vertex 2008 July 28–August 1, 2008, Utö Island, Sweden CMOS pixel vertex detector at STAR Michal Szelezniak on behalf of: LBNL: E. Anderssen, L. Greiner,
M. Deveaux, CBM-Collaboration-Meeting, 25 – 28. Feb 2008, GSI-Darmstadt Considerations on the material budget of the CBM Micro Vertex Detector. Outline:
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
The NA61 Vertex Detector Considerations on site M. Deveaux, Goethe University Frankfurt.
Leo Greiner IPHC1 STAR Vertex Detector Environment with Implications for Design and Testing.
MISTRAL & ASTRAL: Two CMOS Pixel Sensor Architectures dedicated to the Inner Tracking System of the ALICE Experiment R&D strategy with two main streams.
Integration of the MVD Demonstrator S. Amar-Youcef, A. Büdenbender, M. Deveaux, D. Doering, J. Heuser, I. Fröhlich, J. Michel, C. Müntz, C. Schrader, S.
STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer.
1 Summary of the radiation hardness studies of Frankfurt AD AD vanced MO MO nolithic S S ensors for IKF Frankfurt: Dennis Doering*, Samir Amar-Youcef,
LBNL Eric Anderssen, Leo Greiner, Thorsten Stezelberger, Joe Silber, Xiangming Sun, Michal Szelezniak, Chinh Vu, Howard Wieman UTA Jerry Hoffman, Jo Schambach.
B => J/     Gerd J. Kunde PHENIX Silicon Endcap  Mini-strips (50um*2mm – 50um*11mm)  Will not use ALICE chip  Instead custom design based on.
Fast Full Scale Sensors Development IPHC - IRFU collaboration MIMOSA-26, EUDET beam telescope Ultimate, STAR PIXEL detector Journées VLSI 2010 Isabelle.
Irfu saclay CMOS Pixel Sensor Development: A Fast Readout Architecture with Integrated Zero Suppression Christine HU-GUO on behalf of the IRFU and IPHC.
The Micro Vertex Detector for the Compressed Baryonic Matter Experiment September, 7 – 9, 2011 St. Odile, France Joachim Stroth, Goethe-University Frankfurt.
1 PIXEL H. Wieman HFT CDO LBNL Feb topics  Pixel specifications and parameters  Pixel silicon  Pixel Readout uSTAR telescope tests 
ECFA Durham, September Recent progress on MIMOSA sensors A.Besson, on behalf of IReS/LEPSI : M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
CBM MVD Detector and 3D Integration Processes
Next steps toward the beam test
CMOS pixel sensors & PLUME operation principles
The CBM sensor digitizer
Vertex Detector project for the NA61/SHINE collaboration
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Prochaines Etapes des Capteurs CMOS Christine Hu-Guo (IPHC)
Setup for testing LHCb Inner Tracker Modules
Presentation transcript:

DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de (+49) 069 / 798-47119

The MVD – required performances CBM-MVD will: improve secondary vertex resolution host highly granular silicon pixel sensors featuring fast read-out, excellent spatial resolution and robustness to radiation environment. See P.Senger introduction Required performances (SIS-100) Radiation tolerance > 1013neq/cm2 & >3 MRad Read-out speed > 30 kframes/s Intrinsic resolution < 5 µm Operation in vacuum „Light” support and cooling Material budget ~ 0.3 % X0

Research fields towards the MVD Sensor development Radiation tolerance Support & cooling System integration M.Winter Front-End Electronics Main challenges: Provide fast and radiation tolerant sensor featuring low material budget Develop sensor readout system capable to handle high data rates J.Stroth Provide cooling and support with low material budget

Progress towards the MVD ...will meet all requirements Prototype Demonstrator 4 sensors ½ of 1st station Final ...will meet all requirements 2008 2010 2012 Sensor: MIMOSA-20 ~200 frames/s few 1011 neq/cm2 & ~300 kRad 750µm thick Sensor: MIMOSA-26 AHR ~10 kframes/s ~1013 neq/cm2 & >300 kRad 50µm thick Sensor: MIMOSIS-1 (diff. geometry) Readout speed ~30 kframes/s 2015 Radiation tol. >1013 neq/cm2 & >3 MRad Readout Serial/analog Readout CP/digital/high data rates Cooling & support: TPG+RVC foam Cooling & support: CVD diamond Material budget: ~ 2.45 % X0 Material budget: ~ 0.3 % X0

Sensors for the MVD prototype Achieved performances MIMOSA-26 AHR 0.35µm process High Resistivity (HR) EPI (400Ω·cm) Main features: CP architecture in pixel amplification comparator for each column 0 suppression logic pitch: 18.4 μm∼ 0.7 million pixels 21.2 x 10.6 mm2 18.4 µm pixel pitch CMOS processes with smaller feature size (0.18µm) Achieved performances MIMOSA-26 AHR (2009) [1] Design goals (SIS-100) MIMOSIS-1 (~2015) Radiation tolerance ~1013neq/cm2 & >300 kRad ~1013neq/cm2 & >3 MRad Read-out speed ~10 kframes/s >30 kframes/s Intrinsic resolution ~3.5 µm < 5 µm Material budget ~ 0.05 % X0 (50µm Si) [1] CMOS processes with smaller feature size (0.18µm) Sensor geometry – column length Extensively studied at IKF: [1] M.Deveaux „Radiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layer”, accepted for publication in Journal Of Instrumentation 2011

Readout concept for MVD prototype Driver board Clk Start Reset JTAG FEB CB RCB PEXOR PC PCI optical receiver multiwire LVDS 5 x 800MBit/s multiwire LVDS 5 x 1GBit/s Optical Fibers 1 optical link 5 x 300MBit/s Optical Fibers CBM DAQ Powering Latchup detection Current & temperature monitoring LVDS to Optical conversion Powering LVDS drivers Current & temperature monitoring vacuum Data reduction Time stamping Slow control Fast control Data concentrator Data reduction Time stamping Slow control Fast control LVDS to Optical conversion Signal distribution Filtering FEB – Front End Board // CB – Converter Board // RCB – Readout Controller Board

Low voltage distribution Main objectives: On-line current monitoring Latch-up detection & handling (based on STAR solution) Possibility to use radiation tolerant components (CERN) Slow control

Mechanical design * Material budget ~2.45% X0 Cooling Cooling & carrier * Heat Sink Heat Sink Carrier * - @ +20C , >3000W/mK @-50C Demonstrator Prototype Sensor Cu heat sink CVDD 300µm R/O Flex Cable Sensor Flex Cable Cu heat sink RVC TPG R/O Sensors thinned down to 50µm 750µm thick sensors Material budget ~2.45% X0 Material budget ~0.35% X0 TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

Mechanical design Sensor Cu heat sink CVDD 300µm R/O Flex Cable

Improving connectivity and handling  SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope) IMEC (Belgium) + IKF Frankfurt + IPHC Strasbourg (sensors) Radiation tolerance ? Reliability ? Thermal cycles ? Real material budget ?

Thermal imaging system IKF Technology Lab Digital Microscope Keyence VHX-600 Probe Station PA200 (Suss-Microtec) Thermal imaging system (VarioCAM HiRes 640) 10-7 mBar vacuum chamber

Conclusions & Summary The concept of the MVD read-out is defined The hardware components for MVD prototye have been delivered to the IKF Assembly and debugging in progress Software development is ongoing Lab tests to be performed In parallel – software developments Challanges: Deliver MIMOSIS-1 – with required radiation tolerance & readout speed for MVD Most optimum read-out Connectivity Second station – large area sensors…

Thank you for your attention... CBM-MVD Collaboration members: Samir Amar-Youcef, Norbert Bialas, Michael Deveaux, Dennis Doering, Melissa Domachowski, Christina Dritsa, Horst Düring, Ingo Fröhling, Tetyana Galatyuk, Michal Koziel, Jan Michel, Boris Milanovic, Christian Müntz, Bertram Neumann, Paul Scharrer, Christoph Schrader, Selim Seddiki, Joachim Stroth, Tobias Tischler, Christian Trageser, Bernhard Wiedemann Jérome Baudot, Grégory Bertolone, Nathalie Chon-Sen, Gilles Claus, Claude Colledani, Andrei Dorokhov, Wojchiech Dulinski, Marie Gelin-Galivel, Mathieu Goffe, Abdelkader Himmi, Christine Hu-Guo, Kimmo Jaaskelainen, Frédéric Morel, Fouad Rami, Mathieu Specht, Isabelle Valin, Marc Winter