Optics and Layout of PERLE@Orsay Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017.

Slides:



Advertisements
Similar presentations
MCDW 2008, JLAB, Dec 8-12, Multi-pass Droplet Arc Design Guimei WANG (Muons Inc./ODU) Dejan Trbojevic (BNL) Alex Bogacz (JLAB)
Advertisements

1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Study of the Luminosity of LHeC, a Lepton Proton Collider in the LHC Tunnel CERN June F. Willeke, DESY.
Chris Tennant Jefferson Laboratory March 15, 2013 “Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams up to 300 MeV”
Recirculating pass optics V.Ptitsyn, D.Trbojevic, N.Tsoupas.
FFAG Workshopfermilab April 2005 f Summary: FFAG WORKSHOP nonscaling electron model muon FFAGs C. Johnstone Fermilab.
LHeC Test Facility Meeting
ABSTRACT The International Design Study for the Neutrino Factory (IDS- NF) baseline design 1 involves a complex chain of accelerators including a single-pass.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Dogbone RLA – Design.
Recent Progress Toward a Muon Recirculating Linear Accelerator S.A.Bogacz, V.S.Morozov, Y.R.Roblin 1, K.B.Beard 2, A. Kurup, M. Aslaninejad, C. Bonţoiu,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 Alex Bogacz EIC14 Workshop, Jefferson Lab, March 20,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Muon Collider Design Workshop, BNL, December 1-3, 2009.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
MeRHIC Internal Cost Review October, Dmitry Kayran for injector group MeRHIC Internal Cost Review October 7-8, 2009 MeRHIC: Injection System Gun.
Future Circular Collider Study Kickoff Meeting CERN ERL TEST FACILITY STAGES AND OPTICS 12–15 February 2014, University of Geneva Alessandra Valloni.
ICFA Workshop on Future Light Source, FLS2012 M. Shimada A), T. Miyajima A), N. Nakamura A), Y. Kobayashi A), K. Harada A), S. Sakanaka A), R. Hajima B)
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz Status and Plans for Linac and RLAs.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Status of Baseline Linac and RLAs Design.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility 1 LHeC Workshop, Chavennes-de-Bogis, June 26, 2015 LHeC.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Muon Acceleration – RLA, FFAG and Fast Ramping.
Operated by the Jefferson Science Associates for the U.S. Depart. Of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz, Acceleration in.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz IDS- NF Acceleration Meeting, Jefferson Lab,
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Acceleration.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz 1 Recirculating Linac Acceleration  End-to-end.
Preservation of Magnetized Beam Quality in a Non-Isochronous Bend
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility Alex Bogacz NuFact’08, Valencia, Spain, July 4, 2008 Alex.
WG2: Beam Dynamics, Optics and Instrumentation – Summary
J-PARC main ring lattice An overview
Progress on the Linac and RLAs
Warm magnets for LHeC / Test Facility arcs
JLEIC simulations status April 3rd, 2017
PERLE - Current Accelerator Design
Large Booster and Collider Ring
Progress on the Linac and RLAs
Towards a novel ERL Facility - PERLE at Orsay
‘Multi-pass-Droplet’ Experiment
Main magnets for PERLE Test Facility
Status of Linac and RLAs – Simulations
Muon RLA - Design Status and Simulations
12 GeV CEBAF.
Muon RLA - Design Status and New Options
Linac and RLAs – Overview of NF-IDS
Electron Ring Optics Design
Electron Source Configuration
CEPC Injector Damping Ring
LHC (SSC) Byung Yunn CASA.
Progress on the Linac and RLAs
Collider Ring Optics & Related Issues
Optics ‘Scrapbook’ for ERL Test Facility
RLA WITH NON-SCALING FFAG ARCS
Pre-Linac simulations in G4beamline Alex Bogacz & Yves Roblin
MEBT1&2 design study for C-ADS
Accelerator and Interaction Region
Low Emittance Lattices
Betatron Motion with Coupling of Horizontal and Vertical Degrees of Freedom – Part II Alex Bogacz USPAS, Hampton, VA, Jan , 2011.
S.A. Bogacz, G.A. Krafft, S. DeSilva and R. Gamage
Muon RLA - Design Status and New Options
– Overview Alex Bogacz JLAB, Aug. 14, 2017.
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Muon RLA - Design Status and Simulations
Bunch Compressor Beam Line Optics
Alex Bogacz, Geoff Krafft and Timofey Zolkin
Cooler Ring Design Status - July 2017
Booster to Ion Ring Transfer Line
Large Ion Booster Re-design Update
3.2 km FODO lattice for 10 Hz operation (DMC4)
PERLE - Current Accelerator Design
Presentation transcript:

Optics and Layout of PERLE@Orsay Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Overview PERLE Layout Multi-pass linac Optics in ER mode CDR (900 MeV → 450 MeV) New Layout (450 MeV) – ‘lean’, fewer magnet varieties, 1.4 Tesla dipoles Multi-pass linac Optics in ER mode Choice of linac Optics: 3-pass ‘up’ + 3-pass ‘down’ Arc Optics Architecture Isochronous Arcs with Flexible Momentum Compaction (FMC) Optics Switchyard Vertical Spreaders/Recombiners with matching sections: Linacs-Arcs ‘First cut’ lattice design for PERLE@Orsay Magnet inventory Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

PERLE (CDR) - Layout 900 MeV → 450 MeV 1 : 3 : 5 2 : 4 : 6 DE = 75 MeV injector 5 MeV DE = 75 MeV 2 : 4 : 6 5 MeV dump DC = lRF/2 Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Three passes ‘up’ + Three passes ‘down’ PERLE (CDR) - Layout 900 MeV → 450 MeV 1 : 3 : 5 37 m 0.95 m 14 m DE = 75 MeV injector 5 MeV DE = 75 MeV 2 : 4 : 6 5 MeV dump DC = lRF/2 Three passes ‘up’ + Three passes ‘down’ Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

PERLE (downsized) - Layout 37 m 14 m CDR Alessandra Valloni Alex Bogacz 24 m 6 m ‘New’ Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Three passes ‘up’ + Three passes ‘down’ PERLE@Orsay - Layout 450 MeV Arc 1 Arc 2 Arc 3 Arc 5 Arc 4 Arc 6 Magnet varieties 1 : 3 : 5 DE = 75 MeV 6 m 0.6 m 5 MeV 24 m DE = 75 MeV 5 MeV 2 : 4 : 6 DC = lRF/2 Three passes ‘up’ + Three passes ‘down’ Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

PERLE@Orsay - Layout Top view Side view 2 : 4 : 6 1 : 3 : 5 6 m 24 m

Cryo-module - Layout and Cavity Specs SNS 805 MHz Cryo-module 8.491 m 801.58 MHz RF, 5-cell cavity: l = 37.40 cm Lc = 5l/2 = 93.50 cm Grad = 20 MeV/m (18.7 MeV per cavity) DE= 74.8 MeV per Cryo-module 93.5 cm Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Linac - Layout Re-injection chicane Cryo-module (8.491 m) 10 BETA_X&Y[m] BETA_X BETA_Y Cryo-module (8.491 m) Re-injection chicane Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Multi-pass Linac ER Optics Einj E1 E2 Linac 1 E2 Arc 2,4,6 Arc 1,3,5 Linac 2 ×3 59.2518 12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y E6 E5 E4 E3 E2 E1 Einj Acceleration/Deceleration Linac 1 Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Multi-pass Linac ER Optics Arc 2,4,6 Arc 1,3,5 E2 Linac 2 E1 Einj E1 59.2518 12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Einj E1 E2 E3 E4 E5 E6 Acceleration/Deceleration Linac 2 ×3 Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Multi-pass ER Optics Acceleration Deceleration E6 E5 E4 E3 E2 E1 Einj 59.2518 12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y E6 E5 E4 E3 E2 E1 Einj Acceleration 59.2518 12 BETA_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Einj E1 E2 E3 E4 E5 E6 Deceleration Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Arc 6 Optics – FMC Lattice 8.5103 10 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 453 MeV 12×150 bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 Quadrupoles: Q1 L[cm] =10 G[kG/cm] = -1.70 Q2 L[cm] =20 G[kG/cm] = 1.73 Q3 L[cm] =10 G[kG/cm] = -1.48 Q4 L[cm] =10 G[kG/cm] = 1.52 Dipoles: (30 cm long) B = 14 kGauss Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Arc 6 Optics – FMC Lattice 8.5103 10 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 453 MeV 12×150 bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 Synchronous acceleration in the linacs ⇨ Isochronous arc optics: Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Arc 5 Optics – FMC Lattice 8.5397 10 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 379 MeV 8×180 bends 4×90 bends Qx,y = 1.25 triplet: Q3 Q2 Q1 triplet: Q1 Q2 Q3 singlet: Q4 Dipoles: (15 and 30 cm long) B = 14 kGauss Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Arc 3 Optics – FMC Lattice 8.4253 10 3 -3 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 230 MeV 4×300 bends 4×150 bends Qx,y = 1.25 triplet: Q1 Q2 Q3 singlet: Q4 triplet: Q3 Q2 Q1 Quadrupoles: Q1 L[cm] =10 G[kG/cm] = -0.42 Q2 L[cm] =10 G[kG/cm] = 0.7 Q3 L[cm] =10 G[kG/cm] = -0.41 Q4 L[cm] =10 G[kG/cm] = 0.56 Dipoles: (15 and 30 cm long) B = 14 kGauss Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

LHeC 60 GeV ERL: Arc Optics (10 GeV) 230 600 0.6 -0.6 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 3292.61 3060 600 0.6 -0.6 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y doglegs vert. 2-step spreader doglegs dis. sup. cell 58 FMC cells dis. sup. cell vert. 2-step recombiner 180 deg. Arc Arc dipoles: $Lb=400 cm $B=0.47 kGauss Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Switchyard - Vertical Separation of Arcs (1, 3, 5) Arc 1 (80 MeV) Arc 3 (230 MeV) Arc 5 (379 MeV) 30 cm Energies1 : 3 : 5 Dipoles: (15 and 30 cm long) B = 14 kGauss Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Switchyard - Vertical Separation of Arcs (2, 4, 6) Arc 2 (155 MeV) Arc 4 (304 MeV) Arc 6 (453 MeV) 30 cm Energies1 : 2 : 3 Dipoles: (30 and 60 cm long) B = 14 kGauss Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Vertical Spreaders - Optics Spr. 3 (230 MeV) Spr. 5 (379 MeV) 3.9183 20 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y 3.91122 20 1 -1 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y vertical step I vertical step II vertical chicane Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Arc 1 Optics (80 MeV) Isochronous Arc pathlength: 44 × lRF 16.46 20 2 -2 BETA_X&Y[m] DISP_X&Y[m] BETA_X BETA_Y DISP_X DISP_Y Isochronous Arc pathlength: 44 × lRF 2-step vert. Spreader 1800 Arc 2-step vert. Recombiner Spr. dipoles: 4 450 bends L = 15 cm B = 14 kGauss Arc dipoles : 4450 bends L = 15 cm B = 14 kGauss Rec. dipoles: 4 450 bends L = 15 cm B = 14 kGauss quads: L = 10 cm G  1 kGauss/cm Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Magnet Inventory

Longitudinal Acceptance Longitudinal phase space, PLACET2 simulation (900 MeV) Dario Pellegrini   Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Transverse Acceptance Transverse phase space, PLACET2 simulation (900 MeV) Dario Pellegrini Synchrotron rad. effects Well preserved phase space and transverse emittance at 900 MeV and down to the dump. Small impact of (coherent) synchrotron radiation verified with Elegant. Small impact of short-range wakefields expected (to be further investigated). Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

PERLE@Orsay - Layout 6 m 24 m Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Summary PERLE@Orsay (450 MeV) Multi-pass linac Optics in ER mode ‘lean design’, fewer magnet varieties, 1.4 Tesla dipoles Multi-pass linac Optics in ER mode Linear lattice: 3-pass ‘up’ + 3-pass ‘down’ Arc Optics Choice Synchronous acceleration → Isochronous arcs Flexible Momentum Compaction Optics Complete Arc Architecture Vertical switchyard Matching sections: Linac-Switchyard-Arc ‘First cut’ Lattice design for ERL-TF Two Linacs + Six Arcs Magnet inventory Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017

Special Thanks to: Alessandra Valloni Max Klein Erk Jensen Alex Bogacz PERLE@Orsay Workshop, Orsay, Feb. 23, 2017