Figure 1. Position and number of NLS improves genome editing by AsCas12a, LbCas12a and FnoCas12a. (A) General schematic ... Figure 1. Position and number.

Slides:



Advertisements
Similar presentations
Figure 1. Unified models predicting gene regulation based on landscapes of gene-regulating factors. For each gene, position specific combinatorial patterns.
Advertisements

Figure 1. AsCpf1 and LbCpf1-mediated gene editing in human cells
From: Learning by Working in Big Cities
Fig. 1 Nodes in a conceptual knowledge graph
Figure 1. The flow chart illustrates the construction process of anti-CRISPRdb, and the information that users can obtain from anti-CRISPRdb. From: Anti-CRISPRdb:
Figure 1: Necrobiosis lipoidica: Yellow-brown skin lesions with indurated borders located on both lower legs. Figure 1: Necrobiosis lipoidica: Yellow-brown.
Figure 1. (A) The VEGF promoter PQS and scheme of G oxidation to OG, as well as (B) the proposed APE1-dependent pathway ... Figure 1. (A) The VEGF promoter.
Figure 1. Circular taxonomy tree based on the species that were sequenced in our study. Unless provided in the caption above, the following copyright applies.
Figure 1. A novel image analysis tool to monitor epigenetic changes in spatiotemporal distribution of chromatin in live ... Figure 1. A novel image analysis.
Figure 1. Overview of the workflow of NetworkAnalyst 3.0.
Figure 4. (A) Venn diagram showing the overlap of peaks differentially changed in DHT as compared to NT with peaks ... Figure 4. (A) Venn diagram showing.
Figure 1: Axial T2 W images of penis showed a well-defined septated area of 2 cm in the posterior aspect of ... Figure 1: Axial T2 W images.
Figure 1. Effect of random T/A→dU/A substitutions on transcription by T7 RNAP using a 321 bp DNA transcription template ... Figure 1. Effect of random.
FIGURE 1 Histological diagnoses divided into 8-year time frames (n = 1208). Unless provided in the caption above, the following copyright applies to the.
FIGURE 1 The effect of daprodustat on hemoglobin (Hgb) levels
Figure 1. BRCA1-associated R-Loop accumulation at a non-coding region upstream of ESR1 locus. (A) Alignment of DRIP-seq ... Figure 1. BRCA1-associated.
FIGURE 2 Responses to the question: regarding vasoactive drugs, does your centre use the following frequently, rarely ... FIGURE 2 Responses to the question:
Figure 1. Designing a cell-specific Cas-ON switch based on miRNA-regulated anti-CRISPR genes. (A) Schematic of the ... Figure 1. Designing a cell-specific.
FIGURE 1 Maternal (A) urinary aldosterone; (B) plasma active renin; (C) urinary AGT concentrations; and (D) plasma AGT ... FIGURE 1 Maternal (A) urinary.
Figure 1. Schematic illustration of CSN and NDM construction and our statistic model. (A) CSN and NDM construction. (i) ... Figure 1. Schematic illustration.
Figure 1. Ratios of observed to expected numbers of exon boundaries aligning to boundaries of domain and disorder ... Figure 1. Ratios of observed to expected.
Figure 1. autoMLST workflow depicting placement and de novo mode
Figure 1. The 12 species in this study and details of the improved G4-seq method. (A) Phylogenetic representation of ... Figure 1. The 12 species in this.
Fig. 1 Mean change from baseline in ANC ± s. e
Point estimates with ... Point estimates with 95% CI. HR: hip replacement; KR: knee replacement. Unless provided in the caption above, the following copyright.
FIGURE 1 Participant flow diagram. Exercise Counseling Clinic (ECC).
Graph 1. The number of homicide cases per year discussing neuro-evidence. Unless provided in the caption above, the following copyright applies to the.
Figure 6. The DNA lyase activity of hNTHL1 contributes to the processing of lesions in nucleosomes, even in the ... Figure 6. The DNA lyase activity of.
Figure 1. Analysis of human TRIM5α protein with Blast-Search and PhyML+SMS ‘One click’ workflow. (A) NGPhylogeny.fr ... Figure 1. Analysis of human TRIM5α.
Figure 2. Natural history of chlamydia transmission, with arrows showing the transitions between health states. Figure 2. Natural history of chlamydia.
Figure 1 Nelson-Aalen estimates of the cumulative incidence rates for patients on versus off IST. ON = optic neuritis; ... Figure 1 Nelson-Aalen estimates.
Figure 1. A, Crude incidence rates per 100 person-years of follow-up and 95% confidence intervals for each solid organ ... Figure 1. A, Crude incidence.
FIGURE 1 Study consort diagram
Fig. 2 Case 2. Levels of serum creatinine and anti-GBM antibodies before and during treatment with cyclophosphamide, ... Fig. 2 Case 2. Levels of serum.
Figure 1. Illustration of DGR systems and their prediction using myDGR
Figure 1. The pipeline of Aggrescan3D 2.0 server.
FIGURE 1 Food groups consumed (mean, g/d) among US infants and young children by age group and tertile of mean ... FIGURE 1 Food groups consumed (mean,
Figure 1. Summary of experimental conditions and data normalization
Figure 1. EBOV VP35 has NTP-binding and NTPase activities
Figure 1. Prediction result for birch pollen allergen Bet v 1 (PDB: 1bv1), as obtained by comparison to the cherry ... Figure 1. Prediction result for.
Figure 1. Using Voronoi tessellation to define contacts
Figure 1. Designed cotranscriptional RNA structures
Figure 4. RLS spectra of (A) TMPipEOPP and (B) OMHEPzEOPP in the presence of different concentrations of KRAS. The RLS ... Figure 4. RLS spectra of (A)
Figure 1. PaintOmics 3 workflow diagram
Figure 1. Concept of poly(A) tail labeling for translation and localization analyses of reporter mRNAs. Azido-modified ... Figure 1. Concept of poly(A)
Figure 1. Schematic diagram of solar energy and coal-fired power generation system. Unless provided in the caption above, the following copyright applies.
Figure 1. Uncertainty reduction, value creation, and appropriation in two case studies. Unless provided in the caption above, the following copyright applies.
Figure 1 Ratio of the geometric mean concentration of hsTnT (A) and sST2 (B) at baseline (BL) and each subsequent ... Figure 1 Ratio of the geometric mean.
Figure 1. (A) Architecture of Doc2Hpo. (B) Interactive user interface
Figure 1. MERMAID web server interface (Start page, Parameter page): MERMAID provides two ways to submit a protein ... Figure 1. MERMAID web server interface.
Figure 1. Yvis platform overview
Figure 1. The framework of NetGO with seven steps
Figure 1. Workflow of the HawkDock server that is divided into three major steps: (i) input of unbound or bound protein ... Figure 1. Workflow of the HawkDock.
Figure 1. Overview of features that can be assessed in a single RegulationSpotter VCF analysis run. Depending upon a ... Figure 1. Overview of features.
Figure 1 Patient disposition
Figure 1. Accumulation kinetics of TC-NER factors reveal a CSA independent UVSSA recruitment. (A) Representative images ... Figure 1. Accumulation kinetics.
Fig. 1. —Synteny analysis of melon chromosome 1 (brown) and cucumber chromosome 7 (green) based on melon-cucumber ... Fig. 1. —Synteny analysis of melon.
Figure 4. MTase JHP1050 inactivation causes phenotypic effects that vary between strains: growth, viability and ... Figure 4. MTase JHP1050 inactivation.
Figure 1. Scheme of a phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) for selection ... Figure 1. Scheme of a phosphorothioated-terminal.
Figure 1 Genetic results. No case had more than one diagnostic result
Figure 1. (A) Baseline contrast-enhanced CT scan of melanoma patient presenting with metastases in the liver and lymph ... Figure 1. (A) Baseline contrast-enhanced.
Figure 1. Prevalence of parasitic infection and anemia among the children. Unless provided in the caption above, the following copyright applies to the.
Figure 1. DNA-guided RNA cleavage activity
Figure 1. GWAS Catalog associations for coronary artery disease plotted across all chromosomes. Associations added ... Figure 1. GWAS Catalog associations.
Source:Zimnisky (2014). Source:Zimnisky (2014).
Figure 1 Mechanisms of mitral regurgitation.
Fig. 1. —GO categories enriched in gene families showing high or low omega (dN/dS) values for Pneumocystis jirovecii. ... Fig. 1. —GO categories enriched.
Figure 5. The endonucleolytic product from PfuPCNA/MR activity is displaced from dsDNA. Results from real-time ... Figure 5. The endonucleolytic product.
Figure 1. (A) Overview of ENPD including data source, data processing and features. Transcriptomes from TSA, genomes ... Figure 1. (A) Overview of ENPD.
Figure 1. Hepatitis C screening and diagnostic algorithm at the MSF clinic, Karachi, Pakistan, March 2016–September ... Figure 1. Hepatitis C screening.
Presentation transcript:

Figure 1. Position and number of NLS improves genome editing by AsCas12a, LbCas12a and FnoCas12a. (A) General schematic ... Figure 1. Position and number of NLS improves genome editing by AsCas12a, LbCas12a and FnoCas12a. (A) General schematic of Cas12a (B). Schematic representation of a series of Cas12a constructs with different nuclear localization signals. Lesion rates determined by deep sequencing for SpCas9, AsCas12a, LbCas12a and FnoCas12a with different combinations of NLSs at the DNMT1 (C) and EMX1 (D) target sites, respectively. Boxed sequences represent SpCas9 targeting sites, red color labeled NGG PAM. Underlined sequences represent Cas12a targeting sites, blue color labeled TTTV PAM. Data are from three independent biological replicates performed on different days with expression constructs delivered by transient transfection in HEK293T cells (Supplementary Table S1). Error bars indicate ±s.e.m. Statistical significance is determined by two-tailed Student's t-test: ‘***’ denotes P < 0.001, ‘**’ denotes P < 0.01, respectively (Supplementary Table S7). Unless provided in the caption above, the following copyright applies to the content of this slide: © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Nucleic Acids Res, gkz184, https://doi.org/10.1093/nar/gkz184 The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 2. Employing a full-length Direct-Repeat crRNA (DRf-crRNA) enhances editing efficiency. (A) General schematic of ... Figure 2. Employing a full-length Direct-Repeat crRNA (DRf-crRNA) enhances editing efficiency. (A) General schematic of four different crRNAs: 19nt-truncated Direct-Repeat crRNA (DRt-crRNA), 35nt-full-length Direct-Repeat crRNA (DRf-crRNA), full-length Direct-Repeat crRNA with 3′ truncated Direct-Repeat (DRf-crRNA-DRt), full-length Direct-Repeat crRNA with 3′ full-length Direct-Repeat (DRf-crRNA-DRf). The 19-nt and 35-nt Direct Repeats are denoted with the dotted box, the guide sequences are marked in red. Scissors represents the Cas12a RNase domain, which process the crRNA at the RRS. The nuclease activities of each crRNA type are determined by deep sequencing for LbCas12a (B) and FnoCas12a (C) at 11 endogenous target sites on genome. Each box represents the 25th and 75th percentile and median is indicated by a line. Whiskers in the box plots are defined by the Tukey method. Statistical significance is determined by one-way analysis of variance (ANOVA), ‘****’ denotes P < 0.0001 (Supplementary Table S7). Deep sequencing data are from three independent biological replicates performed on different days with expression constructs delivered by transient transfection in HEK293T cells (Supplementary Table S2). Error bars indicate ± s.e.m. (D–G). The ability of Cas12a to process the Full-length Direct Repeat (DRf) is important for enhanced nuclease activity of this crRNA. Evaluation of the editing activity of Wild-type (WT) or RNase-dead Cas12a with different crRNA constructs (wild-type crRNA sequence or crRNA containing a mutation within the RRS sequence of crRNA) for LbCas12a (D, E) and FnoCas12a (F, G) at the DNMT1S3 (D, F) and EMX1S1 (E, G) target sites. Lesion rates determined by deep sequencing. Data are from three independent biological replicates performed on different days with expression constructs delivered by transient transfection in HEK293T cells (Supplementary Table S2). Error bars indicate ±s.e.m. Statistical significance is determined by two-tailed Student's t-test: ‘***’ denote P < 0.001, ‘**’ denote P < 0.01, ‘*’ denote P < 0.05, respectively (Supplementary Table S7). Unless provided in the caption above, the following copyright applies to the content of this slide: © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Nucleic Acids Res, gkz184, https://doi.org/10.1093/nar/gkz184 The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 3. G-C swaps at specific position in the stem of the direct repeat increase editing efficiency. (A) General ... Figure 3. G-C swaps at specific position in the stem of the direct repeat increase editing efficiency. (A) General schematic of G–C swaps (indicated in red) at different position in the stem of the direct repeat hairpin. The activities of 9 different G-C swap crRNAs are determined by deep sequencing for LbCas12a (B) and FnoCas12a (C) at six different endogenous target sites on genome. Each box represents the 25th and 75th percentile and the middle line is the median. Whiskers in the box plots are defined by the Tukey method. Deep sequencing data are from three independent biological replicates performed on different days with expression constructs delivered by transient transfection in HEK293T cells (Supplementary Table S3). Error bars indicate ± s.e.m. Statistical significance is determined by one-way analysis of variance (ANOVA), ‘**’ and ‘***’ denote P < 0.01 and <0.001 respectively (Supplementary Table S7). Unless provided in the caption above, the following copyright applies to the content of this slide: © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Nucleic Acids Res, gkz184, https://doi.org/10.1093/nar/gkz184 The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 4. Genome Editing by LbCas12a in zebrafish embryos Figure 4. Genome Editing by LbCas12a in zebrafish embryos. (A) Activity profiles of truncated Direct-Repeat crRNA ... Figure 4. Genome Editing by LbCas12a in zebrafish embryos. (A) Activity profiles of truncated Direct-Repeat crRNA (DRt-crRNA), full-length Direct-Repeat crRNA (DRf-crRNA) and G–C swapped crRNA (DRf-GC@13-crRNA) at four genomic sites in zebrafish embryos with and without heat shock using 4fmol RNP. Lesion rates are determined by deep sequencing. An aggregate analysis of the editing data (four target sites times three replicates) shows a significant increase in genome editing efficiency in fish embryos without heatshock (B) or with heatshock (C) for the DRf-crRNA and the DRf-GC@13-crRNA relative to the DRt-crRNA. (D) Activity profiles of three different crRNA frameworks at ten genomic sites in zebrafish embryos with and without heat shock treated with 24 fmol LbCas12a RNP. In the aggregate analysis across all ten target sites the DRf-GC@13-crRNA also provides a significant increase in genome editing efficiency in fish embryos without heatshock (E) or with heatshock (F). Deep sequencing data are from zebrafish embryos from three independent injections by three different individuals (Supplementary Table S5). For the bar charts, error bars indicate ± s.e.m. For each dot plot the three lines represent 75th, 50th and 25th percentile, respectively. Statistical significance is determined by one-way analysis of variance (ANOVA), ‘*’, ‘**’, ‘****’ denotes P values of <0.05, <0.01 and <0.0001, respectively (Supplementary Table S7). Unless provided in the caption above, the following copyright applies to the content of this slide: © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Nucleic Acids Res, gkz184, https://doi.org/10.1093/nar/gkz184 The content of this slide may be subject to copyright: please see the slide notes for details.