Chiral Structure of Hadronic Currents

Slides:



Advertisements
Similar presentations
Analysis of QCD via Supergravity S. Sugimoto (YITP) based on hep-th/ (T. Ibaraki + S.S.) Windows to new paradigm in particle Sendai.
Advertisements

Denis Parganlija (Frankfurt U.) Meson 2010 Workshop, Kraków - Poland Structure of Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450) Denis Parganlija.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
The role of the tetraquark at nonzero temperature Francesco Giacosa in collaboration with A. Heinz, S. Strüber, D. H. Rischke ITP, Goethe University, Frankfurt.
Chiral Dynamics How s and Why s 2 nd lecture: Goldstone bosons Martin Mojžiš, Comenius University23 rd Students’ Workshop, Bosen, 3-8.IX.2006.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
New Frontiers in QCD, October 28th, 2011 Based on K. Kim, D. Jido, S.H. Lee PRC 84(2011) K. Kim, Y. Kim, S. Takeuchi, T. Tsukioka PTP 126(2011)735.
The charmonium-molecule hybrid structure of the X(3872) Makoto Takizawa (Showa Pharmaceutical Univ.) Sachiko Takeuchi (Japan College of Social Work) Kiyotaka.
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
L. R. Dai (Department of Physics, Liaoning Normal University) Z.Y. Zhang, Y.W. Yu (Institute of High Energy Physics, Beijing, China) Nucleon-nucleon interaction.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
Mesons and Glueballs September 23, 2009 By Hanna Renkema.
The Baryon octet-vector meson interaction and dynamically generated resonances in the S=0 sector Bao-Xi SUN ( 孙宝玺 ) Beijing University of Technology Hirschegg.
Hadron Spectroscopy from Lattice QCD
Holographic model for hadrons in deformed AdS 5 background K. Ghoroku (Fukuoka Tech.) N. Maru (U. Rome) M. Yahiro (Kyushu U.) M. Tachibana (Saga U.) Phys.Lett.B633(2006)606.
Multiquark states Kerkyra September 11th Franco Buccella, Napoli 1)Historical introduction 2)Spectrum given by the chromo-magnetic interaction 3)Selection.
Denis Parganlija, A Linear Sigma Model with Vector Mesons and Global Chiral Invariance Denis Parganlija In collaboration with Francesco Giacosa,
1 Lattice Quantum Chromodynamics 1- Literature : Lattice QCD, C. Davis Hep-ph/ Burcham and Jobes By Leila Joulaeizadeh 19 Oct
Chiral symmetry breaking and low energy effective nuclear Lagrangian Eduardo A. Coello Perez.
KHALED TEILAB IN COLLABORATION WITH SUSANNA GALLAS, FRANCESCO GIACOSA AND DIRK H. RISCHKE Meson production in proton-proton scattering within an eLSM.
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
And Mesons in Strange Hadronic Medium at Finite Temperature and Density Rahul Chhabra (Ph.D student) Department Of Physics NIT Jalandhar India In cooperation.
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
The meson landscape Scalars and Glue in Strong QCD New states beyond Weird baryons: pentaquark problems “Diquarks,Tetraquarks, Pentaquarks and no quarks”
 Review of QCD  Introduction to HQET  Applications  Conclusion Paper: M.Neubert PRPL 245,256(1994) Yoon yeowoong(윤여웅) Yonsei Univ
Qiang Zhao Theory Division Institute of High Energy Physics Chinese Academy of Sciences 第十届全国粒子物理学术会议,南京, 2008 年 4 月 日 Search for Z(4430) in meson.
1 Keitaro Nagata and Atsushi Hosaka Research Center for Nuclear Physics, Osaka Univ. Quark-Diquark approach for the nucleon and Roper resonance Workshop.
Physics 222 UCSD/225b UCSB Lecture 12 Chapter 15: The Standard Model of EWK Interactions A large part of today’s lecture is review of what we have already.
Study of sigma meson structure in D meson decay Masayasu Harada (Nagoya Univ.) at International Workshop on New Hadon Spectroscopy (November 21, 2012,
Z c decay width in QCD sum rules University of São Paulo F.S. Navarra Peñiscola 27/05/2013 Dias, Navarra, Nielsen, Zanetti, arXiv: New states.
Denis Parganlija (Vienna UT) Mesons in non-perturbative and perturbative regions of QCD Mesons in non-perturbative and perturbative regions of QCD Denis.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Walaa I. Eshraim In collaboration with Stanislaus Janowski, Francesco Giacosa and Dirk H. Rischke Xth Quark Confinement and the Hadron Spectrum, München,
Radiative Decays involving Scalar Mesons Masayasu Harada (Nagoya Univ.) based Japan-US Workshop on “Electromagnetic Meson Production and Chiral Dynamics”
Chiral Approach to the Phi Radiative Decays and the Quark Structure of the Scalar Meson Masayasu Harada (Nagoya Univ.) based HEP-Nuclear Physics Cross.
Nature of f 0 (1370), f 0 (1500) and f 0 (1710) within the eLSM Stanislaus Janowski in collaboration with F. Giacosa, D. Parganlija and D. H. Rischke Stanislaus.
December 7~11, 2010, BARYONS’10. Contents Motivation –Di-quark Structures in Hadrons Introduction to QCD Sum Rule(QCDSR) QCDSR with Di-quark Eff. Lagrangian.
Study of sigma meson structure in chiral models Masayasu Harada (Nagoya Univ.) at Crossover 2012 (Nagoya University, July 12, 2012) Based on ・ M.H., H.Hoshino.
Lecture 7 Parity Charge conjugation G-parity CP FK7003.
into a quark-antiquark pair self-coupling of gluons
The study of pentaquark states in the unitary chiral approach
Institute of High Energy physics KEK, Hadron physics at J-PARC, Japan
Exotic mesons in holographic QCD
Structure of Mass Gap Between Two Spin Multiplets
A novel probe of Chiral restoration in nuclear medium
Reference: “The Standard Model Higgs Boson” by Ivo van Vulpen,
Extending the Linear Sigma Model to Nf = 3
Nuclear Forces - Lecture 3 -
Exotic States in QCD Sum Rules
E. Wang, J. J. Xie, E. Oset Zhengzhou University
Remarks on the hidden-color component
Scalar and Axial-Vector Mesons in a Three-Flavour Sigma Model
Brian Meadows, U. Cincinnati
Scalar Meson σ(600) in the QCD Sum Rule
Hadrons and Nuclei : Chiral Symmetry and Baryons
Possible Interpretations of DsJ(2632)
Exotic charmed four-quark mesons: molecules versus compact states
The Structure of Nuclear force in a chiral quark-diquark model
Heavy quark spin structure in hidden charm molecules
Effective Theory for Mesons
Charmonium spectroscopy above thresholds
Interpretation of the observed hybrid candidates by the QGC Model
Present status of bottom up model: sample works
Lecture 12 Chapter 15: The Standard Model of EWK Interactions
A possible approach to the CEP location
Understanding DsJ*(2317) and DsJ(2460)
Heavy quark exotica and heavy quark symmetry
Remarks on mass difference between the charged and neutral K*(892)
Presentation transcript:

Chiral Structure of Hadronic Currents 陈华星 北京航空航天大学 April 21, 2014 武汉

Contents Motivations Flavor structure of tetraquark Chiral structure of baryon Chiral structure of tetraquark Summary

1. Motivation Conventional 𝑞 𝑞 mesons and 𝑞𝑞𝑞 baryons QCD allows much richer hadron spectrum Exotic hadrons: glueballs , multiquark states , hybrids molecular states

1. Motivation Exotic in quantum numbers: mesons : JPC=0--,0+-,1-+,2+-, etc. baryons : S=+1 & B=1, I=5/2, etc. Candidates: π1(1400), π1(1600) and π1(2000) with IGJPC =1-1-+ Zc(3900), Zc(4020) charged charmonium Exotic in structure: hadron molecule tetraquark, pentaquark Λ(1405), X(3872)

2. Tetraquark Currents The flavor structure of meson is SU(3)F 3⨂ 3 =1⨁8 The flavor structure of baryon is SU(3)F 3⨂3⊗3=1⨁8⨁8⨁10

2. Tetraquark Currents Tetraquark is complicated: For each state, there may exist more than one currents. We try to do a systematical study on tetraquark currents. SU(3)F Flavor structure

2. Tetraquark Currents Meson Currents Scalar JP=0+ Vector JP=1- Tensor JP=1+- Axial-vector JP=1+ Pseudo-scalar JP=0- A, B are the flavor indices; a is the color index. By adding δAB and λAB, we can obtain singlet and octet, respectively.

Diquark Currents

2. Tetraquark Currents We find that there are five independent currents for σ(600) JPC=0++ states:

Fierz Transformations

Chiral Transformation

3. Chiral structure of Baryon Chiral structure of quark: 𝑞= 𝑞 𝐿 + 𝑞 𝑅 = 1− 𝛾 5 2 𝑞+ 1+ 𝛾 5 2 𝑞 3,1 ⨁ 1,3 Chiral structure of meson 3,1 ⨁ 1,3 ⨂ 3 ,1 ⨁ 1, 3 = 1,1 ⨁[ 8,1 ⨁ 1,8 ] ⨁[ 3 ,3 ⨁ 3, 3 ] 𝟏 𝟖 𝟏⨁𝟖 𝑞 𝛾 5 𝑞= 𝑞 𝐿 𝑞 𝑅 − 𝑞 𝑅 𝑞 𝐿 ∈[ 3 ,3 ⨁ 3, 3 ] 𝑞 𝛾 𝜇 𝑞= 𝑞 𝐿 𝛾 𝜇 𝑞 𝐿 + 𝑞 𝑅 𝛾 𝜇 𝑞 𝑅 ∈ 1,1 ,[ 8,1 ⨁ 1,8 ]

3. Chiral structure of Baryon 3,1 ⨁ 1,3 3 = 1,1 ⨁ 8,1 ⨁ 1,8 ⨁[ 3 ,3 ⨁ 3, 3 ] ⨁[ 6,3 ⨁ 3,6 ] ⨁[ 10,1 ⨁ 1,10 ] 𝟏 𝟖 𝟏⨁𝟖 𝟖⨁10 𝟏𝟎

3. Chiral structure of Baryon We investigate chiral properties of local fields of baryons consisting of three quarks with flavor SU(3) symmetry. We construct explicitly independent local three-quark fields: Λ= 𝜖 𝑎𝑏𝑐 𝜖 𝐴𝐵𝐶 ( 𝑞 𝐴 𝑎𝑇 𝐶 𝑞 𝐵 𝑏 ) 𝛾 5 𝑞 𝐶 𝑐 , 𝑁 1 𝑁 = 𝜖 𝑎𝑏𝑐 𝜖 𝐴𝐵𝐷 𝜆 𝑁 𝐷𝐶 ( 𝑞 𝐴 𝑎𝑇 𝐶 𝑞 𝐵 𝑏 ) 𝛾 5 𝑞 𝐶 𝑐 , 𝑁 2 𝑁 = 𝜖 𝑎𝑏𝑐 𝜖 𝐴𝐵𝐷 𝜆 𝑁 𝐷𝐶 ( 𝑞 𝐴 𝑎𝑇 𝐶 𝛾 5 𝑞 𝐵 𝑏 ) 𝑞 𝐶 𝑐 , 𝑁 𝜇 𝑁 = 𝜖 𝑎𝑏𝑐 𝜖 𝐴𝐵𝐷 𝜆 𝑁 𝐷𝐶 ( 𝑞 𝐴 𝑎𝑇 𝐶 𝛾 𝜇 𝛾 5 𝑞 𝐵 𝑏 ) 𝛾 5 𝑞 𝐶 𝑐 , Δ 𝜇 𝑃 = 𝜖 𝑎𝑏𝑐 𝑆 𝑃 𝐴𝐵𝐶 ( 𝑞 𝐴 𝑎𝑇 𝐶 𝛾 𝜇 𝑞 𝐵 𝑏 ) 𝑞 𝐶 𝑐 , Δ 𝜇𝜈 𝑃 = 𝜖 𝑎𝑏𝑐 𝑆 𝑃 𝐴𝐵𝐶 ( 𝑞 𝐴 𝑎𝑇 𝐶 𝜎 𝜇𝜈 𝑞 𝐵 𝑏 ) 𝛾 5 𝑞 𝐶 𝑐 , where a,b,c are color indices, A,B,C are flavor indices, 𝑆 𝑃 𝐴𝐵𝐷 are totally symmetric tensors.

3. Chiral structure of Baryon We can perform chiral transformations, and verify: 𝑁 1 𝑁 + 𝑁 1 𝑁 ∈(8,1)⨁(1,8), Λ, 𝑁 1 𝑁 − 𝑁 1 𝑁 ∈( 3 ,3)⨁(3, 3 ), 𝑁 𝜇 𝑁 , Δ 𝜇 𝑃 ∈(6,3)⨁(3,6), Δ 𝜇𝜈 𝑃 ∈(10,1)⨁(1,10). We can calculate their axial charges, such as:

3. Chiral structure of Baryon We construct all SUL(3)xSUR(3) chirally invariant non-derivative one-pseudoscalar-meson-baryon interactions, i.e., all chiral-singlet Lagrangians made by baryons and 3 ,3 ⨁ 3, 3 mesons:

3. Chiral structure of Baryon We construct all SUL(3)xSUR(3) chirally invariant non-derivative one-vector-meson-baryon interactions, i.e., all chiral-singlet Lagrangians made by baryons and 8,1 ⨁ 1,8 mesons:

4. Chiral structure of Tetraquark Chiral structure of quark: 𝑞= 𝑞 𝐿 + 𝑞 𝑅 = 1− 𝛾 5 2 𝑞+ 1+ 𝛾 5 2 𝑞 3,1 ⨁ 1,3 Chiral structure of tetraquark

4. Chiral structure of Tetraquark We systematically studied the chiral structure of local scalar and pesudoscalar tetraquark currents that belong to the “non-exotic” 3 ,3 ⨁ 3, 3 tetraquark chiral multiplets. We find that they transform differently from 𝑞 𝑞 mesons under the 𝑈 𝐴 1 chiral transformations, but transform in the same way as 𝑞 𝑞 mesons under 𝑈 𝑉 1 , 𝑆𝑈 𝑉 3 and 𝑆𝑈 𝐴 3 chiral transformations. The different 𝑈 𝐴 1 chiral transformation may be reasons for the 𝑈 𝐴 1 anomaly.

4. Chiral structure of Tetraquark We investigate the chiral structure of local vector and axial-vector tetraquark currents that belong to the “non-exotic” 8,1 ⨁ 1,8 tetraquark chiral multiplets. They transform in the same way as 𝑞 𝑞 mesons: We find that there is a one to one correspondence among all the isovector vector and axial-vector local tetraquark currents of quantum numbers 𝐼 𝐺 𝐽 𝑃𝐶 = 1 − 1 − + 𝜋 1 (1600) 𝐼 𝐺 𝐽 𝑃𝐶 = 1 + 1 − − 𝜌(1570) 𝐼 𝐺 𝐽 𝑃𝐶 = 1 − 1 + + 𝑎 1 (1640) 𝐼 𝐺 𝐽 𝑃𝐶 = 1 + 1 + − . ? 𝑏 1 1600 → 𝑓 0 𝜋,𝜌𝜌…

5. Summary We investigate the chiral structure of local baryon and non-local baryon fields, and study their chiral transformation properties. We investigate the chiral structure of local scalar and pseudoscalar tetraquark currents, and study their chiral transformation properties. We investigate the chiral structure of local vector and axial-vector tetraquark currents, and study their chiral transformation properties.

Thank you very much!

4. Baryon masses We assume that their masses originate from three different sources: 1. bare mass term 2. electromagnetic terms 3. spontaneous chiral symmetry breaking terms