Daisuke Satoh, Christiane Pudenz, Silvia Arber  Neuron 

Slides:



Advertisements
Similar presentations
Volume 79, Issue 6, Pages (September 2013)
Advertisements

Volume 87, Issue 1, Pages (July 2015)
Motor Circuits in Action: Specification, Connectivity, and Function
Ludwig Ruder, Aya Takeoka, Silvia Arber  Neuron 
Volume 49, Issue 6, Pages (March 2006)
Volume 71, Issue 5, Pages (September 2011)
Volume 30, Issue 6, Pages (September 2014)
Volume 86, Issue 4, Pages (May 2015)
Volume 87, Issue 5, Pages (September 2015)
Volume 80, Issue 4, Pages (November 2013)
Volume 61, Issue 5, Pages (March 2009)
Volume 22, Issue 5, Pages (January 2018)
Dynamic, Cell-Type-Specific Roles for GABAergic Interneurons in a Mouse Model of Optogenetically Inducible Seizures  Sattar Khoshkhoo, Daniel Vogt, Vikaas.
Volume 92, Issue 1, Pages (October 2016)
Volume 139, Issue 1, Pages (October 2009)
Volume 15, Issue 12, Pages (June 2016)
Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP  Hyungju Park, Andrei Popescu, Mu-ming Poo 
Christian Lohmann, Tobias Bonhoeffer  Neuron 
Volume 57, Issue 3, Pages (February 2008)
Volume 87, Issue 6, Pages (September 2015)
Volume 71, Issue 2, Pages (July 2011)
Volume 27, Issue 16, Pages e3 (August 2017)
Target-Induced Transcriptional Control of Dendritic Patterning and Connectivity in Motor Neurons by the ETS Gene Pea3  Eline Vrieseling, Silvia Arber 
Volume 82, Issue 4, Pages (May 2014)
Volume 71, Issue 6, Pages (September 2011)
Odor Processing by Adult-Born Neurons
Phenotypic Characterization of Speed-Associated Gait Changes in Mice Reveals Modular Organization of Locomotor Networks  Carmelo Bellardita, Ole Kiehn 
Volume 71, Issue 5, Pages (September 2011)
Volume 83, Issue 6, Pages (September 2014)
Volume 96, Issue 6, Pages e5 (December 2017)
Innervation of Wt1+ neurons and number of commissural neurons in neonatal mice. Innervation of Wt1+ neurons and number of commissural neurons in neonatal.
Volume 89, Issue 5, Pages (March 2016)
Volume 80, Issue 4, Pages (November 2013)
Volume 70, Issue 4, Pages (May 2011)
Volume 22, Issue 5, Pages (January 2018)
Volume 22, Issue 5, Pages (January 2018)
Volume 95, Issue 4, Pages e9 (August 2017)
HBL-1 Patterns Synaptic Remodeling in C. elegans
Ascending SAG Neurons Control Sexual Receptivity of Drosophila Females
Volume 82, Issue 4, Pages (May 2014)
Asim A. Beg, Julia E. Sommer, John H. Martin, Peter Scheiffele  Neuron 
Homeostatic Plasticity Shapes Cell-Type-Specific Wiring in the Retina
Volume 21, Issue 3, Pages (October 2017)
Volume 60, Issue 4, Pages (November 2008)
Volume 57, Issue 4, Pages (February 2008)
Niccolò Zampieri, Thomas M. Jessell, Andrew J. Murray  Neuron 
Multisensory Signaling Shapes Vestibulo-Motor Circuit Specificity
Volume 91, Issue 6, Pages (September 2016)
Sleep-Stage-Specific Regulation of Cortical Excitation and Inhibition
Experience-Dependent Equilibration of AMPAR-Mediated Synaptic Transmission during the Critical Period  Kyung-Seok Han, Samuel F. Cooke, Weifeng Xu  Cell.
Volume 93, Issue 4, Pages e6 (February 2017)
Volume 55, Issue 5, Pages (September 2007)
Volume 80, Issue 6, Pages (December 2013)
Volume 71, Issue 6, Pages (September 2011)
Hiroyuki K. Kato, Shea N. Gillet, Jeffry S. Isaacson  Neuron 
Essential Role of Presynaptic NMDA Receptors in Activity-Dependent BDNF Secretion and Corticostriatal LTP  Hyungju Park, Andrei Popescu, Mu-ming Poo 
Volume 97, Issue 6, Pages e5 (March 2018)
Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus  Li Zhou, Ming-Zhe Liu, Qing.
Aljoscha Nern, Yan Zhu, S. Lawrence Zipursky  Neuron 
Volume 87, Issue 6, Pages (September 2015)
Volume 21, Issue 3, Pages (October 2017)
Volume 92, Issue 6, Pages (December 2016)
The Kv4.2 Potassium Channel Subunit Is Required for Pain Plasticity
Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor  Celine Santiago, Greg J. Bashaw  Cell Reports 
Volume 91, Issue 2, Pages (July 2016)
Volume 6, Issue 2, Pages (February 2010)
Activation of Intrinsic Growth State Enhances Host Axonal Regeneration into Neural Progenitor Cell Grafts  Hiromi Kumamaru, Paul Lu, Ephron S. Rosenzweig,
Functional Local Proprioceptive Feedback Circuits Initiate and Maintain Locomotor Recovery after Spinal Cord Injury  Aya Takeoka, Silvia Arber  Cell Reports 
Volume 28, Issue 6, Pages e3 (March 2018)
Volume 42, Issue 3, Pages (May 2004)
Presentation transcript:

Context-Dependent Gait Choice Elicited by EphA4 Mutation in Lbx1 Spinal Interneurons  Daisuke Satoh, Christiane Pudenz, Silvia Arber  Neuron  Volume 89, Issue 5, Pages 1046-1058 (March 2016) DOI: 10.1016/j.neuron.2016.01.033 Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 1 EphA4 Controls Contralateral Premotor Connectivity (A and B) Transverse spinal cord reconstruction of contralateral TA premotor interneurons in WT and EphA4−/− mice shown as scatter and contour plots. (C) Bar plots (∗∗∗p < 0.001, mean + SEM) showing percentage of dorsal and ventral commissural of all premotor interneurons (WT, n = 7, and EphA4−/−, n = 6). (D) Dorso-ventral density plot of averaged contralateral premotor interneuron distribution densities in WT (black, n = 7) and EphA4−/− (turquoise, n = 6) mice. (E) Contralateral dorsal premotor interneuron (magenta) expressing the transcription factor Lbx1 (turquoise) in EphA4−/− mice. (F) Transcriptional codes for spinal progenitor domain territory relevant to this study. (G and H) Ectopic dorsal Lbx1ON commissural premotor interneurons are derived from both dI5, marked by Tlx3 (G) and dI4, marked by Pax2 (H) in Lbx1-Cre; EphA4fl/−; Tau-LSL-INLA mice. Neuron 2016 89, 1046-1058DOI: (10.1016/j.neuron.2016.01.033) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 2 Cell-Autonomous EphA4 Function in Ectopic Dorsal Premotor Interneurons (A and D) Contralateral transverse spinal cord sections showing TA premotor interneurons (magenta) and Lbx1-nlsLacZ expression (turquoise) in Lbx1-Cre; Tau-LSL-nlsLacZ (A) and Lbx1-Cre; EphA4fl/−; Tau-LSL-nlsLacZ (D) mice. (B and E) Digital reconstructions of contralateral spinal TA premotor interneurons overlaid with contour plots displaying density of premotor interneurons. (C) Bar plots depicting percentage of TA premotor interneurons in contralateral dorsal and ventral spinal cord of WT (n = 7) and Lbx1-Cre; EphA4fl/− (n = 7) mice. (F) Dorso-ventral density plots for contralateral TA premotor interneurons in WT and Lbx1-Cre; EphA4fl/− mice (each trace depicts one mouse analyzed). (G and I) TA premotor interneurons (magenta) and Lbx1 nuclear marker (turquoise) in contralateral Rexed’s lamina V/VI of Lbx1-Cre; Tau-LSL-nlsLacZ (G) and Lbx1-Cre; EphA4fl/−; Tau-LSL-nlsLacZ (I) mice. Inset in (I) shows an example of an Lbx1ON commissural premotor interneuron at high magnification. (H and J) Digital reconstructions (left) and dorso-ventral density plots (right) of Lbx1ON (turquoise) and Lbx1OFF (black) commissural premotor interneurons in Lbx1-Cre; Tau-LSL-nlsLacZ (H) and Lbx1-Cre; EphA4fl/−; Tau-LSL-nlsLacZ (J) mice. Bar plots are ∗∗∗p < 0.001, mean + SEM. See also Figure S1. Neuron 2016 89, 1046-1058DOI: (10.1016/j.neuron.2016.01.033) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 3 Locomotor Task-Dependent Gait Choice in Lbx1 EphA4 Conditional Mice (A) Behavioral tests employed in this study and scheme displaying predicted relative strength of proprioceptive signaling under respective experimental condition. (B) Histograms of hindlimb phase values in individual mice during locomotion on ground (magenta) and in water (gray). Dashed lines indicate threshold values for gait types (definition, see Figure S2). (C) Bar plots of percentage of synchronous hindlimb movements during locomotion on ground (magenta) and in water (gray) for WT (n = 5), Lbx1-Cre; EphA4fl/− (n = 9), and EphA4−/− (n = 4) mice. (D) Bar plots of percentage of synchronous limb movements during airstepping for WT (filled bars, hindlimbs: n = 6, forelimbs: n = 5) and Lbx1-Cre; EphA4fl/− (open bars, hindlimbs: n = 8; forelimbs: n = 7) mice. Bar plots are ∗∗∗p < 0.001, mean + SEM. See also Figure S2. Neuron 2016 89, 1046-1058DOI: (10.1016/j.neuron.2016.01.033) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 4 Neuronal Silencing of Local Lbx1 Neurons in Lbx1 EphA4 Conditional Mice Reverts Gait Defects (A) Timeline for pharmacogenetic silencing experiments in Lbx1-Cre; Tau-LSL-FlpO (control) and Lbx1-Cre; EphA4fl/−; Tau-LSL-FlpO (experimental) mice. (B) Expression of PSAM-GlyR (white) by Lbx1-nlsLacZ (turquoise) neurons. (C) Distribution pattern of PSAM-GlyR expressing Lbx1ON interneurons at injection site (single section). (D and E) Bar plots of swimming gait pattern for hindlimbs (D) and forelimbs (E) (left: Lbx1-Cre; Tau-LSL-FlpO with injection of conditional AAV, n = 4; middle: Lbx1-Cre; EphA4fl/−; Tau-LSL-FlpO without injection of AAV, n = 4; right: Lbx1-Cre; EphA4fl/−; Tau-LSL-FlpO with injection of conditional AAV, n = 4). Light gray, turquoise, and dark gray bars indicate pre, 10 min after, and post PSEM308 administration. Bar plots are ∗∗p < 0.01, ∗p < 0.05, mean + SEM. Lines show values from single animals. See also Figure S2. Neuron 2016 89, 1046-1058DOI: (10.1016/j.neuron.2016.01.033) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 5 Developmental Analysis of Swimming Gaits across Genotypes (A–C) Histograms of phase values for hindlimbs and forelimbs of single P5 WT (A), Lbx1-Cre; EphA4fl/− (B), EphA4−/− (C) mice during locomotion in water. Dashed lines indicate threshold values for gait types (as defined in Figure S2). (D and E) Percentages of alternating and synchronous gait for hindlimbs (D) and forelimbs (E) (black: WT, n = 6; magenta: Lbx1-Cre; EphA4fl/− [abbreviated EphA4 cond.], n = 13; turquoise: EphA4−/−, n = 5 for hindlimbs, n = 4 for forelimbs). Percentages for Asy hindlimb strokes are as follows: WT (3.5%), Lbx1 EphA4 conditional mice (26.7%), and full EphA4 mutants (1.7%) (∗∗∗p < 0.001 for WT or full EphA4 mutants versus Lbx1 EphA4 conditional mice). (F–H) Developmental time course of swimming gait, displaying synchrony in WT (n = 5; frequency P9: 3.1 Hz; P15: 5.5 Hz), Lbx1-Cre; EphA4fl/− (n = 9; frequency P9: 3.0 Hz; P15: 4.9 Hz), and EphA4−/− (n = 4) mice. (I) Summary table listing gait phenotypes in different environments and at different developmental stages. Bar plots are ∗∗∗p < 0.001, ∗p < 0.05, mean + SEM. See also Figures S2 and S3. Neuron 2016 89, 1046-1058DOI: (10.1016/j.neuron.2016.01.033) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 6 Aberrant Commissural Connectivity in Adult Lbx1 EphA4 Conditional Mice (A) Scheme for anterograde tracing using AAV-FRT-membrane-tdTomato, AAV-FRT-synaptophysin-GFP, and AAV-FRT-nlsGFP coinjection, as markers for axons, presynaptic terminals, and injection sites, respectively. Unilateral and dorsally restricted injections are performed into mice expressing Flp under the control of Lbx1-Cre. (B and C) Spinal cord sections from Lbx1-Cre; Tau-LSL-FlpO and Lbx1-Cre; EphA4fl/−; Tau-LSL-FlpO mice showing membrane-tdTomato (black) and nlsGFP (red). (D) Reconstructed surfaces of motor neurons (purple) and contacting synaptic terminals (yellow) on ipsilateral and contralateral spinal sides in Lbx1-Cre; Tau-LSL-FlpO and Lbx1-Cre; EphA4fl/−; Tau-LSL-FlpO mice. (E) Synaptic terminal analysis of Lbx1ON interneurons opposed to motor neurons on ipsilateral and contralateral sides at segmental level of injection. Each dot in graph represents single motor neuron (Lbx1-Cre; Tau-LSL-FlpO ipsi, n = 50, Lbx1-Cre; Tau-LSL-FlpO contra, n = 42, Lbx1-Cre; EphA4fl/−; Tau-LSL-FlpO ipsi, n = 58, Lbx1-Cre; EphA4fl/−; Tau-LSL-FlpO contra, n = 41; ∗∗∗p < 0.001). (F) Connectivity scheme for WT and Lbx1 EphA4 conditional mice. See also Figure S4. Neuron 2016 89, 1046-1058DOI: (10.1016/j.neuron.2016.01.033) Copyright © 2016 Elsevier Inc. Terms and Conditions

Figure 7 Input-Output Circuitry of Ectopic Commissural Premotor Interneurons in Lbx1 EphA4 Conditional Mice (A) Injection scheme to visualize muscle sensory afferents (CTb) and left-right double connected premotor interneurons (monosynaptically restricted transsynaptic rabies). (B) CTb (green) and vGlut1 (red) labeled proprioceptive terminals and ectopic commissural premotor interneurons in P13 dorsal spinal cord (blue). (C) Reconstructed ectopic commissural premotor interneuron in dorsal spinal cord. (D) Bar plot of quantification of CTbON proprioceptive inputs per total proprioceptive input to ectopic commissural premotor interneurons in the dorsal spinal cord (TAprop, n = 20; GSprop, n = 22; ∗∗∗p < 0.001). (E) Exemplary image for rabies-GFP and rabies-RFP double-positive premotor interneuron. (F) Distribution pattern of double positive premotor interneurons in Lbx1 EphA4 conditional mice. (G) Summary of wiring diagram for findings illustrated in this figure. See also Figure S5. Neuron 2016 89, 1046-1058DOI: (10.1016/j.neuron.2016.01.033) Copyright © 2016 Elsevier Inc. Terms and Conditions