高エネルギー加速器研究機構(KEK) 素粒子原子核研究所(IPNS) 柴 正太郎 2010年8月4日(水) 13:00-15:00

Slides:



Advertisements
Similar presentations
Bill Spence* Oxford April 2007
Advertisements

From free gauge theories to strings Carmen Núñez I.A.F.E. – Physics Dept.-UBA Buenos Aires 10 Years of AdS/CFT December 19,
On d=3 Yang-Mills-Chern- Simons theories with “fractional branes” and their gravity duals Ofer Aharony Weizmann Institute of Science 14 th Itzykson Meeting.
Instantons in Deformed Supersymmetric Gauge Theories Shin Sasaki (University of Helsinki) Based on the work [hep-th/ JHEP 07 (2007) 068 ] [hep-th/ ,
Summing planar diagrams
Holographic Interface. Collaboration with K. Nagasaki H. Tanida K. Nagasaki, SY, arXiv: [hep-th] K. Nagasaki, H. Tanida, SY, JHEP 1201 (2012)
String Theory A picture book.
Summing Up All Genus Free Energy of ABJM Matrix Model Sanefumi Moriyama (Nagoya U) JHEP [arXiv: ] with H.Fuji and S.Hirano.
The Topological G 2 String Asad Naqvi (University of Amsterdam) (in progress) with Jan de Boer and Assaf Shomer hep-th/0506nnn.
Solitons in Matrix model and DBI action Seiji Terashima (YITP, Kyoto U.) at KEK March 14, 2007 Based on hep-th/ , and hep-th/ ,
S 3 /Z n partition function and Dualities Yosuke Imamura Tokyo Institute of Technology 15 Oct. YKIS2012 Based on arXiv: Y.I and Daisuke.
A 5d/2d/4d correspondence Babak Haghighat, Jan Manschot, S.V., to appear; B. Haghighat and S.V., arXiv:
新しいラージN極限と インスタントン 柴 正太郎 益川塾
Semi-Classical strings as probes of AdS/CFT M. Kruczenski Purdue University Based on: arXiv: R. Roiban, A. Tirziu, A. Tseytlin, M.K. arXiv:
1 MBG-60 Happy birthday, Michael!. 2 Degania, Israel (1910)
AGT 関係式とその一般化に向け て (String Advanced Lectures No.22) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 7 月 5 日(月) 14:00-15:40.
Supersymmetry and Gauge Symmetry Breaking from Intersecting Branes A. Giveon, D.K. hep-th/
Large spin operators in string/gauge theory duality M. Kruczenski Purdue University Based on: arXiv: (L. Freyhult, A. Tirziu, M.K.) Miami 2009.
Spiky Strings in the SL(2) Bethe Ansatz
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
Meta-stable Vacua in SQCD and MQCD David Shih Harvard University K. Intriligator, N. Seiberg and DS hep-th/ I. Bena, E. Gorbatov, S. Hellerman,
Spiky Strings and Giant Magnons on S 5 M. Kruczenski Purdue University Based on: hep-th/ (Russo, Tseytlin, M.K.)
Electric-Magnetic Duality On A Half-Space Edward Witten Rutgers University May 12, 2008.
Field Theory: The Past 25 Years Nathan Seiberg (IAS) The Future of Physics October, 2004 A celebration of 25 Years of.
Integrability and Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) Nordic Network Meeting Helsinki, Thanks to: Niklas.
Germán Sierra Instituto de Física Teórica CSIC-UAM, Madrid Talk at the 4Th GIQ Mini-workshop February 2011.
AGT 関係式 (1) Gaiotto の議論 (String Advanced Lectures No.18) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 2 日(水) 12:30-14:30.
Guido Cossu 高エネルギ加速器研究機構 Lattice Hosotani mechanism on the lattice o Introduction o EW symmetry breaking mechanisms o Hosotani mechanism.
ADE Matrix Models in Four Dimensional QFT DK, J. Lin arXiv: , ``Strings, Matrices, Integrability’’ Paris, August 19, 2014.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
Yuya Sasai (Yukawa Institute for Theoretical Physics, Kyoto University) in collaboration with N. Sasakura (YITP) JHEP 0906, 013 (2009) [arXiv: ]
AGT 関係式 (4) AdS/CFT 対応 (String Advanced Lectures No.21) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 30 日(水) 12:30-14:30.
Supersymmetric Quantum Field and String Theories and Integrable Lattice Models Nikita Nekrasov Integrability in Gauge and String Theory Workshop Utrecht.
AGT 関係式 (3) 一般化に向け て (String Advanced Lectures No.20) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 23 日(水) 12:30-14:30.
AGT 関係式とその一般化に向け て (Towards the generalization of AGT relation) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 (Shotaro Shiba) S. Kanno, Y. Matsuo, S.S. and.
Multi-quark potential from AdS/QCD based on arXiv: Wen-Yu Wen Lattice QCD.
LLM geometries in M-theory and probe branes inside them Jun-Bao Wu IHEP, CAS Nov. 24, 2010, KITPC.
Matrix Models and Matrix Integrals A.Mironov Lebedev Physical Institute and ITEP.
Meta-stable Supersymmetry Breaking in Spontaneously Broken N=2 SQCD Shin Sasaki (Univ. of Helsinki) [hep-th/ (M.Arai, C.Montonen, N.Okada and.
AGT 関係式 (2) AGT 関係式 (String Advanced Lectures No.19) 高エネルギー加速器研究機構 (KEK) 素粒子原子核研究所 (IPNS) 柴 正太郎 2010 年 6 月 9 日(水) 12:30-14:30.
Minkyoo Kim (Wigner Research Centre for Physics) 9th, September, 2013 Seminar in KIAS.
Wilson Loops in AdS/CFT M. Kruczenski Purdue University Miami Based on work in collaboration with Arkady Tseytlin (Imperial College). To appear.
Comments on entanglement entropy in the dS/CFT correspondence Yoshiki Sato ( Kyoto U. ) PRD 91 (2015) 8, [arXiv: ] 9th July.
Meta-stable Supersymmetry Breaking in an N=1 Perturbed Seiberg-Witten Theory Shin Sasaki (Univ. of Helsinki, Helsinki Inst. of Physics) Phys. Rev. D76.
Spectral Networks and Their Applications Gregory Moore, Rutgers University Caltech, March, 2012 Davide Gaiotto, G.M., Andy Neitzke Spectral Networks and.
Maximal super Yang-Mills theories on curved background with off-shell supercharges 総合研究大学院大学 藤塚 理史 共同研究者: 吉田 豊 氏 (KEK), 本多 正純 氏 ( 総研大 /KEK) based on M.
2011 年 4 月 27 日 1 吉田豊 Y. Yoshida arXiv: [hep-th]
Random volumes from matrices Based on the work with Masafumi Fukuma and Sotaro Sugishita (Kyoto Univ.) Naoya Umeda (Kyoto Univ.) [arXiv: ][JHEP.
Seiberg Duality James Barnard University of Durham.
Integrability and AdS/CFT correspondence in three dimensions Konstantin Zarembo École Normale Supérieure Paris “Sakharov Conference”, Moscow,
Multiple M5-branes' theory with Lie 3-algebra 高エネルギー加速器研究機構 素粒子原子核研究 所 柴 正太郎 2010 年 12 月 17 日 (共同研究者 : 本間 良則 氏、小川 盛郎 氏)
With H. Awata, K. Nii (Nagoya U) & M. Shigemori (YITP) ( & to appear soon) KIAS Pre-Strings 2013 Shinji Hirano (University of the Witwatersrand)
ArXiv: (hep-th) Toshiaki Fujimori (Tokyo Institute of Technology) Minoru Eto, Sven Bjarke Gudnason, Kenichi Konishi, Muneto Nitta, Keisuke Ohashi.
Instantons Toshikazu Negi on the Taub-NUT spaces (Ref. Edward Witten, JHEP 0906:067,2009.) KEK journal club on 10.26th Total 18 page.
Equivariant A-twisted GLSM and Gromov-Witten invariants
A Scheme for Metastable Supersymmetry Breaking
Gauge/String Duality and Integrable Systems
STRING THEORY AND M-THEORY: A Modern Introduction
Supersymmetry Breaking Vacua in Geometrically Realized Gauge Theories
Localization and Supersymmetric Entanglement Renyi entropy
Holography and Topological Strings
Heterotic—IIA duality map of discrete data
Chiral Algebra and BPS Spectrum of Argyres-Douglas theories
European String Workshop, April 12, 2018
String coupling and interactions in type IIB matrix model arXiv:0812
D-branes and KW-dualities in (p,q) minimal superstring theory
A new large N reduction for Chern-Simons theory on S3
Vertex Operators and Effective Action of IIB Matrix Model
Deformed Prepotential, Quantum Integrable System and Liouville Field Theory Kazunobu Maruyoshi  Yukawa Institute.
AGT 関係式(1) Gaiotto の議論 (String Advanced Lectures No.18)
Presentation transcript:

高エネルギー加速器研究機構(KEK) 素粒子原子核研究所(IPNS) 柴 正太郎 2010年8月4日(水) 13:00-15:00 AGT 関係式(5)    ループ演算子とその対応 高エネルギー加速器研究機構(KEK) 素粒子原子核研究所(IPNS) 柴 正太郎 2010年8月4日(水) 13:00-15:00

Contents 1. Seiberg-Witten curve in SU(2) case 2. Surface operators 3. Loop operators on surface operators 4. Examples 5. Conclusion

SU(2) Seiberg-Witten curve Seiberg-Witten curve and its cycles, dual cycles and Coulomb moduli In SU(2) case, Seiberg-Witten curve is written as , which has double poles at all the punctures (for a general massive case). The Coulomb (branch) moduli can be obtained as the integration of Seiberg-Witten differential around 1-cycles (on double cover) : where Ai compose a complete set of 1-cycles on , and Bi is its dual. They are related to each other, as where F is prepotential, which is an analytic function of Coulomb moduli and couplings. pick up residues 4-dim N=2 SU(2) quiver & 2-dim Seiberg-Witten curve

AGT relation : 4-dim SU(2) quiver gauge and 2-dim Liouville theory AGT relation says that the correlation function of Liouville theory defined on the Seiberg-Witten curve corresponds to the partition function of 4-dim SU(2) quiver gauge theory : In the ‘semi-classical’ limit , or (where ) For 1/2-BPS surface operators, we consider the correlation function where , satisfying (degenerate condition) and . In the semi-classical limit, which agrees with the discussion based on brane configuration. (W: superpotential) mi : mass of flavors F : prepotential insertion of point operator : why?? as one proof

Surface operators From the viewpoint of M-branes’ system… [Alday-Gaiotto-Gukov-Tachikawa-Verlinde ’09] Natural expectation : “1/2 BPS” relates the insertion of branes…? α: Coulomb moduli 1 2 3 4 5 6 7 8 9 10 M5 → NS5 ○ M5 → D4 M2 → D2 The surface operator is here! 5

2-dim (Liouville theory) Self-dual strings can be regarded as surface or loop operators. Intersection rule for M-branes is as follows : M5-branes and M5-branes intersect on 3+1-dim spacetime. This is nothing but “our universe” in Seiberg-Witten system. M5-branes and M2-branes intersect on 1+1-dim spacetime. This 2-dim object is called “self-dual string”. This self-dual string can be regarded as 1/2-BPS surface and loop operators! 4-dim (gauge theory) 2-dim (Liouville theory) Surface operator 2 Point operator Loop operator 1 SW curve

Loop operators on surface op. Monodromy : action of Wilson / ’t Hooft loop operators Now we consider the monodromy of correlation function around 1-cycles in the existence of surface operator (under WKB approx. / using concrete form of W) Aj-cycle : Bj-cycle : In the limit of , this is equivalent for In fact, each monodromy represents the action of loop operators : Aj-cycle monodromy : Wilson loop operator on surface operator Bj-cycle monodromy : ‘t Hooft loop operator on surface operator Results from brane config. We will see it. on Seiberg-Witten curve in 4-dim spacetime where gauge theory lives

Location of surface operator and loop operators on Seiberg-Witten curve “label” of Wilson/’t Hooft operator 1 Seiberg-Witten curve surface operator 1 = fusion of two operators Re-fusion of them 1 2 3 directions 0, 4, 5, 6, 10 ↑ directions 1, 2, 3 → Action of loop operators = monodromy

Wilson loop operators (for simplest Nf=4 case) and S-duality vertex operators for punctures degenerate insertion for surface operator fusion phase (flip) S-dual (electric / magnetic dual) of Wilson loop is nothing but ‘t Hooft loop : i.e. s-channel t-channel

‘t Hooft loop operators (for simplest Nf=4 case) phase (flip) fusion shift

Examples Loop operators corresponding to Wilson / ’t Hooft loop operators A-cycle monodromy operator ~ Wilson loop operator B-cycle monodromy operator ~ ‘t Hooft loop operator This is equivalent to Because of the fusion algebra for degenerate field ( n = 2j+1) :

Example 1 : Wilson loop in Nf=4 case F : fusion matrix (± = ±b) Ω : flip matrix Fusion algebra in spin-1/2 representation (for simplicity) : Then we obtain The explicit form is

Example 2: ‘t Hooft loop in N=2* case (with 1 adjoint) B : braiding matrix (a’ = a±b/2) (a” = a±b/2) (a’ = a”) where

Example 3 : ‘t Hooft loop in Nf=4 case (a’ = a, a±b) (a” = a, a±b) (a’ = a”)

Fusion matrix : Braiding matrix : Flip matrix : determined by structure of Liouville theory

Conclusion The 1/2-BPS surface operator in 4-dim N=2 SU(2) quiver gauge theory corresponds to level-2 degenerate (point) operator in 2-dim Liouville theory in the context of AGT relation. To see this claim, we saw (1) reproduction of correct superpotential, (2) interpretation of M-brane configuration, and (3) monodromy around the surface operator. The monodromy represents the action of Wilson / ‘t Hooft loop operator. These operators correspond to loop operators on Seiberg-Witten curve. From the calculation of Liouville conformal block (using fusion, flip and braiding matrices), one can concretely check this correspondence for loop operators in some simple cases.