Figure 3 Ultra-high-field MRI at 7.0T (patients 5 and 6)‏

Slides:



Advertisements
Similar presentations
Figure 2. MRI features of patients with MS who had antibodies to myelin oligodendrocyte glycoprotein MRI features of patients with MS who had antibodies.
Advertisements

Figure 1 Initial brain imaging (A–C) patient 1; (D–F) patient 2; (G–I) patient 3; (J–L) patient 4; and (M) patient 2. Initial brain imaging (A–C) patient.
Figure 3 Brain MRI findings in patients with MOG-Ab Extensive brain lesions with large diameter (A and B), posterior reversible encephalopathy–like lesions.
Figure 1 Box plot of the venous diameter in lesions
Figure 1 Brain MRI findings in the present case
Figure 4. Brain imaging and neuropathologic demonstration of Epstein-Barr virus (EBV) encephalitis in patient PT-10 Brain imaging and neuropathologic demonstration.
Figure 2 Spinal cord lesions
Figure 2 Orbital MRI findings One-third of myelin oligodendrocyte glycoprotein antibody–positive patients revealed extensive enhancement patterns that.
Figure Neuroimaging and pathology
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure Facial photograph during headache attack and brain and upper cervical cord MRI Facial photograph during headache attack and brain and upper cervical.
Figure Brain MRI of the patient throughout the disease course(A) Brain MRI at the time of cerebral toxoplasmosis diagnosis (a) and after 1 month of toxoplasmosis.
Figure 3 Example of venous narrowing
Figure 1 MRI head in faciobrachial dystonic seizures (A) Axial fluid-attenuated inversion recovery image from patient 3 in table 2 shows T2-weighted hyperintensity.
Figure 1 Histopathologic features of a chronic active and a chronic plaque in the MS brain Histopathologic features of a chronic active and a chronic plaque.
Figure Radiographic and histopathologic findings (A) Brain MRI at presentation shows multiple areas of T2 hyperintensity in the mesial temporal lobes,
Figure 1. Prebiopsy and postbiopsy MRI
Figure 1. Brain MRI follow-up of Sjögren syndrome–associated type II mixed cryoglobulinemic cerebral vasculitis treated with rituximab Brain MRI follow-up.
Figure 3. MRI of compressive optic neuropathy caused by dural lesions in sarcoidosis MRI of compressive optic neuropathy caused by dural lesions in sarcoidosis.
Figure Brain MRI and biopsy specimens from the pontine lesion
Figure Longitudinal MRI study data demonstrating evolution of central pontine myelinolysis(A, B) Axial T2-weighted MRI of the brain from January 9, 2014,
Figure 1 Quantitative spinal cord MRI maps and segmentations
Figure 1 Cerebral MRI during the disease course Cerebral MRI with multiple cerebral supratentorial lesions during the disease course: periventricular lesions.
Figure 4 Comparison of 7.0T and 3.0T MRI (patients 5 and 6)‏
Figure 1 Neuropathologic examination of brain areas with normal MRI appearance and with gadolinium enhancement (patient 1)‏ Neuropathologic examination.
Figure 2 T2-weighted and subtraction images
Figure 2 Exemplary MRI of a patient with contrast enhancement on postcontrast FLAIR MRI of a 54-year-old patient with viral meningitis caused by varicella-zoster.
Figure 2 7T MRI can differentiate between early PML and MS lesions Two different patterns of brain lesions were observed using 7T MRI: ring-enhancing lesions.
Figure 3 Punctate PML lesions visualized by highly resolving T2
Figure MRI and immunologic findings
Figure MRI and neuropathologic characteristics of the tumefactive demyelinating lesion in our patient MRI and neuropathologic characteristics of the tumefactive.
Figure MRI and histology of demyelinating lesion(A) Symmetric T2 hyperintensity in the midbrain with relative sparing of cerebral peduncles. MRI and histology.
Figure 1 White matter lesion central vein visibility in MS and absence in small vessel disease (SVD)‏ White matter lesion central vein visibility in MS.
Figure 2 Example of venous narrowing
Figure 2 Lesion localization visualized in the top view of the model
Figure 1 MRI of inflammatory myelitis before and after treatment
Figure 1 Radiologic features of human myelin oligodendrocyte glycoprotein immunoglobulin G–positive patients with cranial nerve involvement Radiologic.
Figure 1 Illustration of white matter– and lesion-associated regions of interest (ROIs)‏ Illustration of white matter– and lesion-associated regions of.
Figure 1 Evolution of blood cell counts during 18-month treatment and follow-up (A) Mean white blood cell count, (B) mean lymphocyte count, (C) mean eosinophil.
Figure 2 Cerebral and spinal MRI (A) Restricted diffusion of both optic nerves (arrows) on diffusion-weighted and apparent diffusion coefficient imaging.
Figure 5 Pairwise correlations between selected patient-reported outcomes and performance tests in patients with MS (A) The number of pairwise correlations.
Figure Clinical and radiologic course(A) The T2 contrast-enhanced sequence on day 3 shows an extensive central cord lesion extending from C2 to T7. Clinical.
Figure Postcontrast axial and coronal brain MRI in a patient with CLIPPERS treated with hydroxychloroquineT1-weighted spin echo post IV gadolinium contrast.
Figure 1 Annual trend in specimen type submitted as first sample for aquaporin-4 immunoglobulin G testing (serum only vs CSF only vs both) from 101,065.
Figure MRI brain 6 weeks post admission (A–C) Symmetrical high signal changes on fluid-attenuated inversion recovery sequences predominantly affecting.
Figure 1 Association between serum levels of IL-18 and hippocampal volume in patients with schizophrenia Scatter plots show a positive correlation between.
Figure 1 Evolution of MRI findings during interleukin (IL)–7 therapy
Figure 1 Imaging of disease onset and treatment response Repeat MRI scans including fluid-attenuated inversion recovery (FLAIR) (A) and T2 fast field echo.
Figure 1 MRI findings over time
Figure 2 Pre- and posttreatment contrast-enhanced MRI of second toxoplasmosis lesion in case 1(A) Contrast-enhanced MRI demonstrated a second ring-enhancing.
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure Neurologic, gastrointestinal, and dermatologic findings
Figure MRI brain comparison prior and after treatment and brain biopsy findings MRI brain comparison prior and after treatment and brain biopsy findings.
Figure 1 Peripheral blood lymphocyte counts during dose titrationB-lymphocyte (CD19+; A) and total lymphocyte (CD45+; B) counts (cells/µL) in peripheral.
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
Figure 1 Detailed overview of treatment course and paraclinical findings Maximum intensity projection maps of supratentorial inversion recovery images.
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
Figure 1 MRIs (case 1)‏ MRIs (case 1) An enlarging T2 lesion in the cerebral white matter near the angular gyrus and a new lesion in the left middle cerebellar.
Figure 2 MRIs (cases 2 and 3)‏
Figure 1 Imaging and histopathologic characteristics of patients with CNS-FHL Imaging and histopathologic characteristics of patients with CNS-FHL FLAIR.
Figure 2 Brain MRI features of 3 representatives patients with MS who experienced WNS after FTY withdrawal Brain MRI features of 3 representatives patients.
Figure Rapid progression of lesions after natalizumab treatment(A) MRI from February Rapid progression of lesions after natalizumab treatment(A)
Figure A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia A 57-year-old man with relapsing-remitting MS (RRMS) and new-onset ataxia.
Figure 4 Patient 3 MRI evolution over time
Figure 3 Patient 2 MRI evolution over time before relapse
Figure 2 Patient 1 MRI evolution over time
The “white gray sign.” Axial high-resolution 3D inversion recovery fast-spoiled gradient-echo T1-weighted image demonstrates decreased gray-white contrast.
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
Left, T1 spin-echo image at 1
Same section position with spin-echo T1-weighted sequences at 1
Presentation transcript:

Figure 3 Ultra-high-field MRI at 7.0T (patients 5 and 6)‏ Ultra-high-field MRI at 7.0T (patients 5 and 6) Supratentorial T2*-weighted (A, B) and postgadolinium T1-weighted images (D) of patient 5 obtained at 7.0T are displayed. Postgadolinium T1-weighted imaging depicts a small contrast-enhancing lesion (black arrow, D) that is only marginally delineated on corresponding T2*-weighted images (zoom, B) despite using a very high spatial resolution of 0.08 mm3. Fusion (C) of coregistered postgadolinium T1-weighted (D) and T2*-weighted (B) identifies a small brain vessel within the center of the chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) lesion (white arrow, C). T2*w = 2D T2*-weighted fast low angle shot at 7.0T, echo time (TE) = 25.0 ms, repetition time (TR) = 1,820 ms, spatial resolution = 0.2 × 0.2 × 2 mm3; T1-gad = postgadolinium 3D T1-weighted magnetization-prepared rapid gradient echo at 7.0T, TE = 2.98 ms, TR = 2,300 ms, inversion time = 900 ms, spatial resolution = 1.0 × 1.0 × 1.0 mm3. Morten Blaabjerg et al. Neurol Neuroimmunol Neuroinflamm 2016;3:e226 © 2016 American Academy of Neurology