Frank Cowell: GE Excess Demand & Prices GENERAL EQUILIBRIUM: EXCESS DEMAND AND THE RÔLE OF PRICES MICROECONOMICS Principles and Analysis Frank Cowell Almost.

Slides:



Advertisements
Similar presentations
Chapter 12 Keynesian Business Cycle Theory: Sticky Wages and Prices.
Advertisements

Copyright McGraw-Hill/Irwin, 2005 Monopolistic Competition Characteristics Price and Output in Monopolistic Competition Monopolistic Competition.
Chapter 3 Demand and Behavior in Markets. Copyright © 2001 Addison Wesley LongmanSlide 3- 2 Figure 3.1 Optimal Consumption Bundle.
Copyright © 2002 Pearson Education, Inc. Slide 1.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Supply and Demand The goal of this chapter is to explain how supply and demand really work. What determines the price of a good or service? How does the.
Author: Julia Richards and R. Scott Hawley
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
Copyright McGraw-Hill/Irwin, 2002 Monopolistic Competition Characteristics Price and Output in Monopolistic Competition Monopolistic Competition.
Writing Pseudocode And Making a Flow Chart A Number Guessing Game
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
1 Discreteness and the Welfare Cost of Labour Supply Tax Distortions Keshab Bhattarai University of Hull and John Whalley Universities of Warwick and Western.
Recht und Ökonomie SS 2011Microeconomics Repetition Part 1 Recht und Ökonomie (Law and Economics) LVA-Nr.: SS 2011 Microeconomics (Repetition Part.
Strategies for Global Value Added: Gains Comparative advantage © Professor Daniel F. Spulber.
Solve Multi-step Equations
Market Equilibrium: The Invisible Hand Randy Rucker Professor Department of Agricultural Economics and Economics June 19, 2013.
Slide 1 Diploma Macro Paper 2 Monetary Macroeconomics Lecture 2 Aggregate demand: Consumption and the Keynesian Cross Mark Hayes.
KOOTHS | BiTS: Economic Policy and Market Regulation (winter term 2013/2014), Part 2 1 Economic Policy and Market Regulation Part 2 Dr. Stefan Kooths BiTS.
An Introduction to International Economics
PowerPoint Lectures for Principles of Macroeconomics, 9e
Marketsslide 1 PRICE DETERMINATION IN MARKETS The market demand curve shows the amount demanded at every price. The market supply curve shows the amount.
MICROECONOMICS Principles and Analysis Frank Cowell
General Equilibrium: price taking
Review of Exam 1.
Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Money, Interest Rates, and Exchange Rates
Copyright © 2009 Pearson Addison-Wesley. All rights reserved. Chapter 25 Money and Economic Stability in the ISLM World.
Chapter 10 Money, Interest, and Income
Measuring the Economy’s Performance
Household Demand and Supply
Factors, Prime Numbers & Composite Numbers
How to convert a left linear grammar to a right linear grammar
Constant, Linear and Non-Linear Constant, Linear and Non-Linear
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
Chapter 7 Review Economics.
1..
© 2012 National Heart Foundation of Australia. Slide 2.
DEMAND RELATIONSHIPS AMONG GOODS
UTILITY MAXIMIZATION AND CHOICE
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Splines IV – B-spline Curves
Splines I – Curves and Properties
Market Power: Monopoly and Monopsony
Perfect Competition.
In this chapter, you will learn…
Motivation The Great Depression caused a rethinking of the Classical Theory of the macroeconomy. It could not explain: Drop in output by 30% from 1929.
Analyzing Genes and Genomes
1 Chapter 11 APPLIED COMPETITIVE ANALYSIS Copyright ©2005 by South-Western, a division of Thomson Learning. All rights reserved.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Copyright © 2008 Pearson Addison-Wesley. All rights reserved. Chapter 12 Keynesian Business Cycle Theory: Sticky Wages and Prices.
Intracellular Compartments and Transport
PSSA Preparation.
Copyright McGraw-Hill/Irwin, 2005 Aggregate Demand Changes in AD Determinants of AD Aggregate Supply Determinants of AS Equilibrium & Changes in.
Copyright McGraw-Hill/Irwin 2002 Aggregate Demand Derivation of the AD Curve Changes in AD Determinants of AD Shifts in AE Schedule and Curve Aggregate.
Essential Cell Biology
1 © ©1999 South-Western College Publishing PowerPoint Slides prepared by Ken Long Principles of Economics 2nd edition by Fred M Gottheil.
Copyright McGraw-Hill/Irwin, 2005 Short-Run and Long- Run Aggregate Supply Short-Run Aggregate Supply Long-Run Aggregate Supply Equilibrium with.
Balance-of-Payments and Exchange-Rate Determination
Copyright © Cengage Learning. All rights reserved.
The Firm: Demand and Supply
Frank Cowell: Microeconomics General Equilibrium: Basics MICROECONOMICS Principles and Analysis Frank Cowell Almost essential A Simple Economy Useful,
Frank Cowell: General Equilibrium Basics GENERAL EQUILIBRIUM: BASICS MICROECONOMICS Principles and Analysis Frank Cowell Almost essential A Simple Economy.
Frank Cowell: Microeconomics General Equilibrium: Excess Demand and the Rôle of Prices MICROECONOMICS Principles and Analysis Frank Cowell Almost essential.
The Firm: Optimisation
MICROECONOMICS Principles and Analysis Frank Cowell
Frank Cowell: Microeconomics The Firm: Demand and Supply MICROECONOMICS Principles and Analysis Frank Cowell Almost essential Firm: Optimisation Almost.
Frank Cowell: Microeconomics Consumer: Aggregation MICROECONOMICS Principles and Analysis Frank Cowell Almost essential Firm: Optimisation Consumption:
Presentation transcript:

Frank Cowell: GE Excess Demand & Prices GENERAL EQUILIBRIUM: EXCESS DEMAND AND THE RÔLE OF PRICES MICROECONOMICS Principles and Analysis Frank Cowell Almost essential General equilibrium: Basics Useful, but optional General Equilibrium: Price Taking Almost essential General equilibrium: Basics Useful, but optional General Equilibrium: Price Taking Prerequisites March Note: the detail in slides marked * can only be seen if you run the slideshow

Frank Cowell: GE Excess Demand & Prices Some unsettled questions Under what circumstances can we be sure that an equilibrium exists? Will the economy somehow tend to this equilibrium? And will this determine the price system for us? We will address these using the standard model of a general-equilibrium system To do this we need just one more new concept March

Frank Cowell: GE Excess Demand & Prices Overview… Excess Demand Functions Equilibrium Issues Prices and Decentralisation General Equilibrium: Excess Demand+ Definition and properties March

Frank Cowell: GE Excess Demand & Prices Ingredients of the excess demand function Aggregate demands (the sum of individual households' demands) Aggregate net-outputs (the sum of individual firms' net outputs) Resources Incomes determined by prices check this out March

Frank Cowell: GE Excess Demand & Prices Aggregate consumption, net output From households demand function x i h = D ih (p, y h ) = D ih (p, y h (p) ) Because incomes depend on prices So demands are just functions of p x i h = x i h (p) Rival: extra consumers require additional resources. Same asconsumer: aggregation If all goods are private (rival) then aggregate demands can be written: x i (p) = h x i h (p) x i h () depends on holdings of resources and shares From firms supply of net output q i f = q i f (p) standard supply functions/ demand for inputs Aggregate: q i = f q i f (p) valid if there are no externalities. As in Firm and the market) graphical summary March

Frank Cowell: GE Excess Demand & Prices Derivation of x i (p) Alf Bill The Market p1p1 x1x1 a x1x1 b x1x1 p1p1 p1p1 Alfs demand curve for good 1 Bills demand curve for good 1 Pick any price Sum of consumers demand Repeat to get the market demand curve March

Frank Cowell: GE Excess Demand & Prices Derivation of q i (p) q1q1 p low-cost firm q2q2 p high-cost firm p q 1 +q 2 both firms Supply curve firm 1 (from MC) Supply curve firm 2 Pick any price Sum of individual firms supply Repeat… The market supply curve March

Frank Cowell: GE Excess Demand & Prices Subtract q and R from x to get E: Demand p1p1 x1x1 p1p1 Resource stock R1R1 1 Excess Demand E1E1 p1p1 E i (p) := x i (p) – q i (p) – R i demand for i aggregated over h Resource stock of i net output of i aggregated over f p1p1 Supply q1q1 March

Frank Cowell: GE Excess Demand & Prices Equilibrium in terms of Excess Demand Equilibrium is characterised by a price vector p* 0 such that: For every good i: E i (p*) 0 For each good i that has a positive price in equilibrium (i.e. if p i * > 0): E i (p*) = 0 If this is violated, then somebody, somewhere isn't maximising… The materials balance condition (dressed up a bit) You can only have excess supply of a good in equilibrium if the price of that good is 0 March

Frank Cowell: GE Excess Demand & Prices Using E to find the equilibrium Five steps to the equilibrium allocation 1. From technology compute firms net output functions and profits 2. From property rights compute household incomes and thus household demands 3. Aggregate the xs and qs and use x, q, R to compute E 4. Find p * as a solution to the system of E functions 5. Plug p * into demand functions and net output functions to get the allocation But this begs some questions about step 4 March

Frank Cowell: GE Excess Demand & Prices Issues in equilibrium analysis Existence Is there any such p*? Uniqueness Is there only one p*? Stability Will p tend to p*? For answers we use some fundamental properties of E March

Frank Cowell: GE Excess Demand & Prices Two fundamental properties… Walras Law. For any price p: n p i E i (p) = 0 i=1 You only have to work with n-1 (rather than n ) equations Can you explain why they are true? Homogeneity of degree 0. For any price p and any t > 0 : E i (tp) = E i (p) Hint #1: think about the "adding-up" property of demand functions… Hint #2: think about the homogeneity property of demand functions… You can normalise the prices by any positive number Reminder: these hold for any competitive allocation, not just equilibrium March

Frank Cowell: GE Excess Demand & Prices Price normalisation* We may need to convert from n numbers p 1, p 2,…p n to n 1 relative prices The precise method is essentially arbitrary The choice of method depends on the purpose of your model It can be done in a variety of ways: You could divide by to give a a numéraire standard value system pnpn neat set of n-1 prices p labour p MarsBar Marxian theory of valueMars bar theory of value set of prices that sum to 1 This method might seem weird But it has a nice property The set of all normalised prices is convex and compact n p i i=1 March

Frank Cowell: GE Excess Demand & Prices Normalised prices, n=2 (1,0) (0,1) J={p: p 0, p 1 +p 2 = 1} (0, 0.25) (0.75, 0) p1p1 p2p2 The set of normalised prices The price vector (0,75, 0.25) March

Frank Cowell: GE Excess Demand & Prices Normalised prices, n=3 0 p3p3 p1p1 p2p2 (1,0,0) (0,0,1) (0,1,0) J={p: p 0, p 1 +p 2 +p 3 = 1} (0, 0, 0.25) (0.5, 0, 0) (0, 0.25, 0) The set of normalised prices The price vector (0,5, 0.25, 0.25) March

Frank Cowell: GE Excess Demand & Prices Overview… Excess Demand Functions Equilibrium Issues Prices and Decentralisation General Equilibrium: Excess Demand+ Is there any p *? Existence Uniqueness Stability March

Frank Cowell: GE Excess Demand & Prices Approach to the existence problem Imagine a rule that moves prices in the direction of excess demand: if E i >0, increase p i if E i 0, decrease p i An example of this under stability below This rule uses the E-functions to map the set of prices into itself An equilibrium exists if this map has a fixed point a p * that is mapped into itself? To find the conditions for this, use normalised prices p J J is a compact, convex set We can examine this in the special case n = 2 In this case normalisation implies that p 2 1 p 1 March

Frank Cowell: GE Excess Demand & Prices Existence of equilibrium? * E1E1 0 1 p 1 * p1p1 E -functions are: continuous, bounded below Excess supply Excess demand good 1 is free here good 2 is free here ED diagram, normalised prices Excess demand function with well-defined equilibrium price Case with discontinuous E No equilibrium price where E crosses the axis Case where excess demand for good2 is unbounded below E never crosses the axis Why boundedness below? As p 2 0, by normalisation, p 1 1 As p 2 0 if E 2 is bounded below then p 2 E 2 0 By Walras Law, this implies p 1 E 1 0 as p 1 1 So if E 2 is bounded below then E 1 cant be everywhere positive Why boundedness below? As p 2 0, by normalisation, p 1 1 As p 2 0 if E 2 is bounded below then p 2 E 2 0 By Walras Law, this implies p 1 E 1 0 as p 1 1 So if E 2 is bounded below then E 1 cant be everywhere positive Why? March

Frank Cowell: GE Excess Demand & Prices Existence: a basic result An equilibrium price vector must exist if: 1. excess demand functions are continuous and 2. bounded from below (continuity can be weakened to upper-hemi-continuity) Boundedness is no big deal Can you have infinite excess supply…? However continuity might be tricky Let's put it on hold We examine it under the rôle of prices March

Frank Cowell: GE Excess Demand & Prices Overview… Excess Demand Functions Equilibrium Issues Prices and Decentralisation General Equilibrium: Excess Demand+ Is there just one p *? Existence Uniqueness Stability March

Frank Cowell: GE Excess Demand & Prices The uniqueness problem Multiple equilibria imply multiple allocations, at normalised prices… …with reference to a given property distribution Will not arise if the E-functions satisfy WARP If WARP is not satisfied this can lead to some startling behaviour… let's see March

Frank Cowell: GE Excess Demand & Prices Multiple equilibria E1E1 0 1 p1p1 Three equilibrium prices Suppose there were more of resource 1 three equilibria degenerate to one! Now take some of resource 1 away single equilibrium jumps to here!! March

Frank Cowell: GE Excess Demand & Prices Overview… Excess Demand Functions Equilibrium Issues Prices and Decentralisation General Equilibrium: Excess Demand+ Will the system tend to p *? Existence Uniqueness Stability March

Frank Cowell: GE Excess Demand & Prices Stability analysis We can model stability similar to physical sciences We need… A definition of equilibrium A process Initial conditions Main question is to identify these in economic terms March Simple example

Frank Cowell: GE Excess Demand & Prices A stable equilibrium Equilibrium: Status quo is left undisturbed by gravity Equilibrium: Status quo is left undisturbed by gravity Stable: If we apply a small shock the built-in adjustment process (gravity) restores the status quo Stable: If we apply a small shock the built-in adjustment process (gravity) restores the status quo March

Frank Cowell: GE Excess Demand & Prices An unstable equilibrium * Equilibrium: This actually fulfils the definition But… Equilibrium: This actually fulfils the definition But… Unstable: If we apply a small shock the built-in adjustment process (gravity) moves us away from the status quo March

Frank Cowell: GE Excess Demand & Prices Gravity in the CE model Imagine there is an auctioneer to announce prices, and to adjust if necessary If good i is in excess demand, increase its price If good i is in excess supply, decrease its price (if it hasn't already reached zero) Nobody trades till the auctioneer has finished March

Frank Cowell: GE Excess Demand & Prices Gravity in the CE model: the auctioneer using tâtonnement* Announce p individual dd & ss Evaluate excess dd Equilibrium? Adjust p individual dd & ss Evaluate excess dd Equilibrium ? Adjust p individual dd & ss Evaluate excess dd Equilibrium? Adjust p individual dd & ss Evaluate excess dd Equilibrium? …once were at equilibrium we trade March

Frank Cowell: GE Excess Demand & Prices Adjustment and stability Adjust prices according to sign of E i : If E i > 0 then increase p i If E i 0 then decrease p i A linear t â tonnement adjustment mechanism: Define distance d between p(t) and equilibrium p * Given WARP, d falls with t under t â tonnement Two examples: with/without WARP March

Frank Cowell: GE Excess Demand & Prices Globally stable… 0 1 E1E1 Excess supply Excess demand E 1 (0) p 1 (0) E 1 (0) p 1 (0) p1p1 If E satisfies WARP then the system must converge… Start with a very high price Yields excess supply Under tâtonnement price falls Start instead with a low price Under tâtonnement price rises Yields excess demand p 1 * March

Frank Cowell: GE Excess Demand & Prices Not globally stable… * 0 1 E1E1 Excess supply Excess demand Locally Stable Locally Stable Unstable p1p1 Also locally stable Also locally stable Start with a very high price …now try a (slightly) low price Start again with very low price Check the middle crossing …now try a (slightly) high price Here WARP does not hold Two locally stable equilibria One unstable March

Frank Cowell: GE Excess Demand & Prices Overview… Excess Demand Functions Equilibrium Issues Prices and Decentralisation General Equilibrium: Excess Demand+ The separation theorem and the role of large numbers March

Frank Cowell: GE Excess Demand & Prices Decentralisation Recall the important result on decentralisation discussed in the case of Crusoes island The counterpart is true for this multi-person world Requires assumptions about convexity of two sets, defined at the aggregate level: the attainable set: A := {x: x q+R, (q) the better-than set: B(x*) := { h x h : U h (x h ) U h (x* h ) } To see the power of the result here… use an averaging argument previously used in lectures on the firm March

Frank Cowell: GE Excess Demand & Prices Decentralisation again * The attainable set x2x2 x1x1 0 A = {x: x q+R, (q) 0} The price line The Better-than- x * set A B p 1 p 2 B = { h x h : U h (x h ) U h (x *h )} Decentralisation x * maximises income over A x * minimises expenditure over B x * March

Frank Cowell: GE Excess Demand & Prices Problems with prices Either non-convex technology (increasing returns or other indivisibilities) for some firms, or… …non-convexity of B-set (non-concave- contoured preferences) for some households… …may imply discontinuous excess demand function and so… …absence of equilibrium But if there are large numbers of agents everything may be OK two examples March

Frank Cowell: GE Excess Demand & Prices A non-convex technology* input output The case with 1 firm Rescaled case of 2 firms, … 4, 8, 16 Limit of the averaging process The Better-than set A One unit of input produces exactly one of output q* q' B Limiting attainable set is convex Equilibrium q * is sustained by a mixture of firms at q ° and q ' separating prices and equilibrium q° March

Frank Cowell: GE Excess Demand & Prices Non-convex preferences* x1x1 x2x2 No equilib- rium here The case with 1 person Rescaled case of 2 persons, A continuum of consumers The attainable set A separating prices and equilibrium Limiting better-than set is convex Equilibrium x * is sustained by a mixture of consumers at x ° and x ' x* x' x° March B

Frank Cowell: GE Excess Demand & Prices Summary Excess demand functions are handy tools for getting results Continuity and boundedness ensure existence of equilibrium WARP ensures uniqueness and stability But requirements of continuity may be demanding Review March