1 Approximation in Algorithmic Game Theory Robust Approximation Bounds for Equilibria and Auctions Tim Roughgarden Stanford University.

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

Chapter 4 Sampling Distributions and Data Descriptions.
1
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
Introduction to Algorithms 6.046J/18.401J
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Minimizing Efficiency Loss in Mechanism and Protocol Design Tim Roughgarden (Stanford) includes joint work with: Shuchi Chawla (Wisconsin), Ho-Lin Chen.
Chapter 7 Sampling and Sampling Distributions
Selfish Flows over Time Umang Bhaskar, Lisa Fleischer Dartmouth College Elliot Anshelevich Rensselaer Polytechnic Institute.
1 Outline relationship among topics secrets LP with upper bounds by Simplex method basic feasible solution (BFS) by Simplex method for bounded variables.
Photo Slideshow Instructions (delete before presenting or this page will show when slideshow loops) 1.Set PowerPoint to work in Outline. View/Normal click.
Online and Offline Selling in Limit Order Markets Aaron Johnson Yale University Kevin Chang Yahoo! Inc. Workshop on Internet and Network Economics December,
1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA A A A.
Break Time Remaining 10:00.
This module: Telling the time
The basics for simulations
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
1 Robust Price of Anarchy Bounds via Smoothness Arguments Tim Roughgarden Stanford University.
1 Atomic Routing Games on Maximum Congestion Costas Busch Department of Computer Science Louisiana State University Collaborators: Rajgopal Kannan, LSU.
The Weighted Proportional Resource Allocation Milan Vojnović Microsoft Research Joint work with Thành Nguyen Microsoft Research Asia, Beijing, April, 2011.
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
Outline Minimum Spanning Tree Maximal Flow Algorithm LP formulation 1.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
Joint work with Andre Lieutier Dassault Systemes Domain Theory and Differential Calculus Abbas Edalat Imperial College Oxford.
Slide 1 of 31 Noam Nisan Approximation Mechanisms: computation, representation, and incentives Noam Nisan Hebrew University, Jerusalem Based on joint works.
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
: 3 00.
5 minutes.
1 Let’s Recapitulate. 2 Regular Languages DFAs NFAs Regular Expressions Regular Grammars.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Converting a Fraction to %
Chapter 8 Estimation Understandable Statistics Ninth Edition
Clock will move after 1 minute
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Online Node-weighted Steiner Connectivity Problems Vahid Liaghat University of Maryland MohammadTaghi Hajiaghayi (UMD) Debmalya Panigrahi (Duke) 1.
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
Auction Theory Class 5 – single-parameter implementation and risk aversion 1.
1 A Graph-Theoretic Network Security Game M. Mavronicolas , V. Papadopoulou , A. Philippou  and P. Spirakis § University of Cyprus, Cyprus  University.
Class 4 – Some applications of revenue equivalence
Simple and Near-Optimal Auctions Tim Roughgarden (Stanford)
EC941 - Game Theory Prof. Francesco Squintani Lecture 4 1.
Regret Minimization and the Price of Total Anarchy Paper by A. Blum, M. Hajiaghayi, K. Ligett, A.Roth Presented by Michael Wunder.
1 Smooth Games and Intrinsic Robustness Christodoulou and Koutsoupias, Roughgarden Slides stolen/modified from Tim Roughgarden TexPoint fonts used in EMF.
Competitive Analysis of Incentive Compatible On-Line Auctions Ron Lavi and Noam Nisan SISL/IST, Cal-Tech Hebrew University.
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
Near-Optimal Simple and Prior-Independent Auctions Tim Roughgarden (Stanford)
1 Intrinsic Robustness of the Price of Anarchy Tim Roughgarden Stanford University.
The Price of Routing Unsplittable Flow Yossi Azar Joint work with B. Awerbuch and A. Epstein.
Congestion games Computational game theory Fall 2010
Presented By Aaron Roth
Near-Optimal Simple and Prior-Independent Auctions Tim Roughgarden (Stanford)
Presentation transcript:

1 Approximation in Algorithmic Game Theory Robust Approximation Bounds for Equilibria and Auctions Tim Roughgarden Stanford University

2 Motivation Clearly: many modern applications in CS involve autonomous, self-interested agents –motivates noncooperative games as modeling tool Unsurprising fact: this often makes full optimality hard/impossible. –equilibria (e.g., Nash) of noncooperative games are typically suboptimal –auctions lose revenue from strategic behavior –incentive constraints can make poly-time approximation of NP-hard problems even harder

3 Approximation in AGT The Price of Anarchy (etc.) –worst-case approximation guarantees for equilibria Revenue Maximization –guarantees for auctionsin non-Bayesian settings (information-theoretic) Algorithm Mechanism Design –approximation algorithms robust to selfish behavior(computational) Computing Approximate Equilibria –e.g., is there a PTAS for computing an approximate Nash equilibrium? this talk FOCS 2010 tutorial

4

5 Price of Anarchy Price of anarchy: [Koutsoupias/Papadimitriou 99] quantify inefficiency w.r.t some objective function. –e.g., Nash equilibrium: an outcome such that no player better off by switching strategies Definition: price of anarchy (POA) of a game (w.r.t. some objective function): optimal obj fn value equilibrium objective fn value the closer to 1 the better

6 The Price of Anarchy Network w/2 players: st 2x 12 5x 5 0

7 The Price of Anarchy Nash Equilibrium: cost = = 28 st 2x 12 5x 5 0

8 The Price of Anarchy Nash Equilibrium: To Minimize Cost: Price of anarchy = 28/24 = 7/6. if multiple equilibria exist, look at the worst one st 2x 12 5x 5 cost = = 24 cost = = 28 st 2x 12 5x 5 0 0

9 The Need for Robustness Meaning of a POA bound: if the game is at an equilibrium, then outcome is near-optimal.

10 The Need for Robustness Meaning of a POA bound: if the game is at an equilibrium, then outcome is near-optimal. Problem: what if cant reach equilibrium? (pure) equilibrium might not exist might be hard to compute, even centrally –[Fabrikant/Papadimitriou/Talwar], [Daskalakis/ Goldbeg/Papadimitriou], [Chen/Deng/Teng], etc. might be hard to learn in a distributed way Worry: are our POA bounds meaningless?

11 Robust POA Bounds High-Level Goal: worst-case bounds that apply even to non-equilibrium outcomes! best-response dynamics, pre-convergence –[Mirrokni/Vetta 04], [Goemans/Mirrokni/Vetta 05], [Awerbuch/Azar/Epstein/Mirrokni/Skopalik 08] correlated equilibria –[Christodoulou/Koutsoupias 05] coarse correlated equilibria aka price of total anarchy aka no-regret players –[Blum/Even-Dar/Ligett 06], [Blum/Hajiaghayi/Ligett/Roth 08]

12 Abstract Setup n players, each picks a strategy s i player i incurs a cost C i (s) Important Assumption: objective function is cost(s) := i C i (s) Key Definition: A game is (λ,μ)-smooth if, for every pair s,s * outcomes (λ > 0; μ < 1): i C i (s * i,s -i ) λcost(s * ) + μcost(s) [(*)]

13 Smooth => POA Bound Next: canonical way to upper bound POA (via a smoothness argument). notation: s = a Nash eq; s * = optimal Assuming (λ,μ)-smooth: cost(s) = i C i (s) [defn of cost] i C i (s * i,s -i ) [s a Nash eq] λcost(s * ) + μcost(s) [(*)] Then: POA (of pure Nash eq) λ/(1-μ).

14 Why Is Smoothness Stronger? Key point: to derive POA bound, only needed i C i (s * i,s -i ) λcost(s * ) + μcost(s) [(*)] to hold in special case where s = a Nash eq and s * = optimal. Smoothness: requires (*) for every pair s,s * outcomes. –even if s is not a pure Nash equilibrium

15 Some Smoothness Bounds atomic (unweighted) selfish routing [Awerbuch/Azar/Epstein 05], [Christodoulou/Koutsoupias 05], [Aland/Dumrauf/Gairing/Monien/Schoppmann 06], [Roughgarden 09] nonatomic selfish routing [Roughgarden/Tardos 00],[Perakis 04] [Correa/Schulz/Stier Moses 05] weighted congestion games [Aland/Dumrauf/Gairing/Monien/Schoppmann 06], [Bhawalkar/Gairing/Roughgarden 10] submodular maximization games [Vetta 02], [Marden/Roughgarden 10] coordination mechanisms [Cole/Gkatzelis/Mirrokni 10]

Beyond Nash Equilibria Definition: a sequence s 1,s 2,...,s T of outcomes is no-regret if: for each player i, each fixed action q i : –average cost player i incurs over sequence no worse than playing action q i every time –if every player uses e.g. multiplicative weights then get o(1) regret in poly-time –empirical distribution = "coarse correlated eq" 16 pure Nash mixed Nash correlated eq no-regret

An Out-of-Equilibrium Bound Theorem: [Roughgarden STOC 09] in a (λ,μ)-smooth game, average cost of every no-regret sequence at most [λ/(1-μ)] x cost of optimal outcome. (the same bound we proved for pure Nash equilibria) 17

18 Smooth => No-Regret Bound notation: s 1,s 2,...,s T = no regret; s * = optimal Assuming (λ,μ)-smooth: t cost(s t ) = t i C i (s t ) [defn of cost]

19 Smooth => No-Regret Bound notation: s 1,s 2,...,s T = no regret; s * = optimal Assuming (λ,μ)-smooth: t cost(s t ) = t i C i (s t ) [defn of cost] = t i [C i (s * i,s t -i ) + i,t ] [ i,t := C i (s t )- C i (s * i,s t -i )]

20 Smooth => No-Regret Bound notation: s 1,s 2,...,s T = no regret; s * = optimal Assuming (λ,μ)-smooth: t cost(s t ) = t i C i (s t ) [defn of cost] = t i [C i (s * i,s t -i ) + i,t ] [ i,t := C i (s t )- C i (s * i,s t -i )] t [λcost(s * ) + μcost(s t )] + i t i,t [(*)]

21 Smooth => No-Regret Bound notation: s 1,s 2,...,s T = no regret; s * = optimal Assuming (λ,μ)-smooth: t cost(s t ) = t i C i (s t ) [defn of cost] = t i [C i (s * i,s t -i ) + i,t ] [ i,t := C i (s t )- C i (s * i,s t -i )] t [λcost(s * ) + μcost(s t )] + i t i,t [(*)] No regret: t i,t 0 for each i. To finish proof: divide through by T.

Intrinsic Robustness Theorem: [Roughgarden STOC 09] for every set C, unweighted congestion games with cost functions restricted to C are tight: maximum [pure POA] = minimum [λ/(1-μ)] congestion games w/cost functions in C (λ,μ): all such games are (λ,μ)-smooth 22

Intrinsic Robustness Theorem: [Roughgarden STOC 09] for every set C, unweighted congestion games with cost functions restricted to C are tight: maximum [pure POA] = minimum [λ/(1-μ)] weighted congestion games [Bhawalkar/ Gairing/Roughgarden ESA 10] and submodular maximization games [Marden/Roughgarden CDC 10] are also tight in this sense congestion games w/cost functions in C (λ,μ): all such games are (λ,μ)-smooth 23

24 What's Next? beating worst-case POA bounds: want to reach a non-worst-case equilibrium –because of learning dynamics [Charikar/Karloff/ Mathieu/Naor/Saks 08], [Kleinberg/Pilouras/Tardos 09], etc. –from modest intervention [Balcan/Blum/Mansour], etc. POA bounds for auctions –practical auctions often lack "dominant strategies" (sponsored search, combinatorial auctions, etc.) –want bounds on their (Bayes-Nash) equilibria [Christodoulou et al 08], [Paes Leme/Tardos 10], [Bhawalkar/Roughgarden 11], [Hassadim et al 11]

25 Key Points smoothness: a canonical way to bound the price of anarchy (for pure equilibria) robust POA bounds: smoothness bounds extend automatically beyond Nash equilibria tightness: smoothness bounds provably give optimal POA bounds in fundamental cases extensions: approximate equilibria; best- response dynamics; local smoothness for correlated equilibria; also Bayes-Nash eq

26 Reasoning About Auctions

27 Competitive Analysis Fails Observation: which auction (e.g., opening bid) is best depends on the (unknown) input. e.g., opening bid of $0.01 or $10 better? Competitive analysis: compare your revenue to that obtained by an omniscient opponent. Problem: fails miserably in this context. predicts that all auctions are equally terrible novel analysis framework needed

28 A New Analysis Framework Prior-independent analysis framework: [Hartline/Roughgarden STOC 08, EC 09] compare revenue to that of opponent with statistical information about input. Goal: design a distribution-independent auction that is always near-optimal for the underlying distribution (no matter what the distribution is). distribution over inputs not used in the design of the auction, only in its analysis

29 Bulow-Klemperer ('96) Setup: single-item auction. Let F be a known valuation distribution. [Needs to be "regular".] Theorem: [Bulow-Klemperer 96] : for every n: Vickrey's revenue OPT's revenue

30 Bulow-Klemperer ('96) Setup: single-item auction. Let F be a known valuation distribution. [Needs to be "regular".] Theorem: [Bulow-Klemperer 96] : for every n: Vickrey's revenue OPT's revenue [with (n+1) i.i.d. bidders] [with n i.i.d. bidders]

31 Bulow-Klemperer ('96) Setup: single-item auction. Let F be a known valuation distribution. [Needs to be "regular".] Theorem: [Bulow-Klemperer 96] : for every n: Vickrey's revenue OPT's revenue [with (n+1) i.i.d. bidders] [with n i.i.d. bidders] Interpretation: small increase in competition more important than running optimal auction. a "bicriteria bound"!

32 Bayesian Profit Maximization Example: 1 bidder, 1 item, v ~ known distribution F want to choose optimal reserve price p expected revenue of p: p(1 - F(p)) given F, can solve for optimal p * e.g., p * = ½ for v ~ uniform[0,1] but: what about k,n >1 (with i.i.d. v i 's)?

33 Bayesian Profit Maximization Example: 1 bidder, 1 item, v ~ known distribution F want to choose optimal reserve price p expected revenue of p: p(1 - F(p)) given F, can solve for optimal p * e.g., p * = ½ for v ~ uniform[0,1] but: what about n >1 (with i.i.d. v i 's)? Theorem: [Myerson 81] auction with max expected revenue is second-price with above reserve p *. note p * is independent of n need minor technical conditions on F

34 Reformulation of BK Theorem Theorem: [Bulow-Klemperer 96] : for every n: Vickrey's revenue OPT's revenue [with (n+1) i.i.d. bidders] [with n i.i.d. bidders] Lemma: if true for n=1, then true for all n. relevance of OPT reserve price decreases with n Reformulation for n=1 case: 2 x Vickrey's revenue Vickrey's revenue with n=1 and random with n=1 and opt reserve [drawn from F] reserve r *

35 Proof of BK Theorem selling probability q expected revenue R(q) 0 1

36 Proof of BK Theorem selling probability q expected revenue R(q) concave if and only if F is regular 0 1

37 Proof of BK Theorem opt revenue = R(q * ) selling probability q expected revenue R(q) 0 1 q*q*

38 Proof of BK Theorem opt revenue = R(q * ) selling probability q expected revenue R(q) 0 1 q*q*

39 Proof of BK Theorem opt revenue = R(q * ) revenue of random reserve r (from F) = expected value of R(q) for q uniform in [0,1] = area under revenue curve selling probability q expected revenue R(q) 0 1

40 Proof of BK Theorem opt revenue = R(q * ) revenue of random reserve r (from F) = expected value of R(q) for q uniform in [0,1] = area under revenue curve selling probability q expected revenue R(q) 0 1

41 Proof of BK Theorem opt revenue = R(q * ) revenue of random reserve r (from F) = expected value of R(q) for q uniform in [0,1] = area under revenue curve selling probability q expected revenue R(q) concave if and only if F is regular 0 1 q*q*

42 Proof of BK Theorem opt revenue = R(q * ) revenue of random reserve r (from F) = expected value of R(q) for q uniform in [0,1] = area under revenue curve ½ R(q * ) selling probability q expected revenue R(q) concave if and only if F is regular 0 1 q*q*

43 Recent Progress BK theorem: the "prior-free" Vickrey auction with extra bidder as good as optimal (w.r.t. F) mechanism, no matter what F is. More general "bicriteria bounds": [Hartline/Roughgarden EC 09], [Dughmi/Roughgarden/Sundararajan EC 09] Prior-independent approximations: [Devanur/Hartline EC 09], [Dhangwotnotai/Roughgarden/Yan EC 10], [Hartline/Yan EC 11]

44 What's Next? Take-home points: standard competitive analysis useless for worst-case revenue maximization but can get simultaneous competitive guarantee with all Bayesian-optimal auctions Future Directions: thoroughly understand single-parameter problems, include non "downward-closed" ones non-i.i.d. settings multi-parameter? (e.g., combinatorial auctions)

45 Approximation in AGT The Price of Anarchy (etc.) –worst-case approximation guarantees for equilibria Revenue Maximization –guarantees for auctionsin non-Bayesian settings (information-theoretic) Algorithm Mechanism Design –approximation algorithms robust to selfish behavior(computational) Computing Approximate Equilibria –e.g., is there a PTAS for computing an approximate Nash equilibrium? this talk FOCS 2010 tutorial

46 Epilogue Higher-Level Moral: worst-case approximation guarantees as powerful "intellectual export" to other fields (e.g., game theory). many reasons for approximation (not just computational complexity)

47 Epilogue Higher-Level Moral: worst-case approximation guarantees as powerful "intellectual export" to other fields (e.g., game theory). many reasons for approximation (not just computational complexity) THANKS!