Yi-Ling Du, Doralyn S. Dalisay, Raymond J. Andersen, Katherine S. Ryan 

Slides:



Advertisements
Similar presentations
Volume 15, Issue 10, Pages (October 2008)
Advertisements

Volume 13, Issue 6, Pages (June 2006)
Volume 22, Issue 5, Pages v-vi (May 2015)
Volume 23, Issue 8, Pages (August 2016)
Volume 19, Issue 9, Pages (September 2012)
Volume 20, Issue 1, Pages (January 2013)
Volume 20, Issue 10, Pages (October 2013)
Genomic Mining for Aspergillus Natural Products
Adding Specificity to Artificial Transcription Activators
Volume 17, Issue 4, Pages (April 2010)
Volume 17, Issue 4, Pages (April 2010)
Volume 20, Issue 6, Pages (June 2013)
Volume 13, Issue 4, Pages (April 2006)
An FAD-Dependent Pyridine Nucleotide-Disulfide Oxidoreductase Is Involved in Disulfide Bond Formation in FK228 Anticancer Depsipeptide  Cheng Wang, Shane.
Mechanism of Thioesterase-Catalyzed Chain Release in the Biosynthesis of the Polyether Antibiotic Nanchangmycin  Tiangang Liu, Xin Lin, Xiufen Zhou, Zixin.
Volume 23, Issue 4, Pages (April 2016)
Biosynthesis of Actinorhodin and Related Antibiotics: Discovery of Alternative Routes for Quinone Formation Encoded in the act Gene Cluster  Susumu Okamoto,
Volume 13, Issue 3, Pages (March 2006)
Volume 18, Issue 10, Pages (October 2011)
Benjamin N. Mijts, Pyung Cheon Lee, Claudia Schmidt-Dannert 
Volume 19, Issue 2, Pages (February 2012)
Volume 21, Issue 8, Pages (August 2014)
Volume 21, Issue 10, Pages (October 2014)
A Revised Pathway Proposed for Staphylococcus aureus Wall Teichoic Acid Biosynthesis Based on In Vitro Reconstitution of the Intracellular Steps  Stephanie.
Redesign of a Dioxygenase in Morphine Biosynthesis
Identification and Characterization of the Lysobactin Biosynthetic Gene Cluster Reveals Mechanistic Insights into an Unusual Termination Module Architecture 
Characterization of a Fungal Thioesterase Having Claisen Cyclase and Deacetylase Activities in Melanin Biosynthesis  Anna L. Vagstad, Eric A. Hill, Jason W.
Elucidation of the Biosynthetic Gene Cluster and the Post-PKS Modification Mechanism for Fostriecin in Streptomyces pulveraceus  Rixiang Kong, Xuejiao.
Volume 15, Issue 10, Pages (October 2008)
Yit-Heng Chooi, Ralph Cacho, Yi Tang  Chemistry & Biology 
Insights into the Generation of Structural Diversity in a tRNA-Dependent Pathway for Highly Modified Bioactive Cyclic Dipeptides  Tobias W. Giessen, Alexander M.
Volume 13, Issue 5, Pages (May 2006)
Volume 20, Issue 12, Pages (December 2013)
Volume 21, Issue 10, Pages (October 2014)
Liujie Huo, Shwan Rachid, Marc Stadler, Silke C. Wenzel, Rolf Müller 
Sherry S. Lamb, Tejal Patel, Kalinka P. Koteva, Gerard D. Wright 
Volume 22, Issue 2, Pages (February 2015)
PqsE of Pseudomonas aeruginosa Acts as Pathway-Specific Thioesterase in the Biosynthesis of Alkylquinolone Signaling Molecules  Steffen Lorenz Drees,
Volume 20, Issue 4, Pages (April 2013)
Volume 10, Issue 11, Pages (November 2003)
Volume 17, Issue 1, Pages (January 2010)
Volume 16, Issue 5, Pages (May 2009)
Volume 14, Issue 2, Pages (February 2007)
Volume 17, Issue 4, Pages (April 2010)
Evidence for a Protein-Protein Interaction Motif on an Acyl Carrier Protein Domain from a Modular Polyketide Synthase  Kira J. Weissman, Hui Hong, Bojana.
Volume 21, Issue 8, Pages v-vi (August 2014)
An Artificial Pathway to 3,4-Dihydroxybenzoic Acid Allows Generation of New Aminocoumarin Antibiotic Recognized by Catechol Transporters of E. coli  Silke.
Volume 15, Issue 5, Pages (May 2008)
Volume 12, Issue 11, Pages (November 2005)
In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A  Jeanne M. Davidsen, Craig A. Townsend 
One Enzyme, Three Metabolites: Shewanella algae Controls Siderophore Production via the Cellular Substrate Pool  Sina Rütschlin, Sandra Gunesch, Thomas.
Volume 11, Issue 1, Pages (January 2004)
Volume 22, Issue 6, Pages (June 2015)
Volume 15, Issue 6, Pages (June 2008)
Volume 16, Issue 5, Pages (May 2009)
Characterization of the Biosynthetic Gene Cluster for Benzoxazole Antibiotics A33853 Reveals Unusual Assembly Logic  Meinan Lv, Junfeng Zhao, Zixin Deng,
Volume 18, Issue 12, Pages (December 2011)
Volume 16, Issue 2, Pages (February 2009)
Volume 12, Issue 2, Pages (February 2005)
Vanessa V. Phelan, Yu Du, John A. McLean, Brian O. Bachmann 
Volume 24, Issue 2, Pages (February 2017)
Biosynthetic Pathway Connects Cryptic Ribosomally Synthesized Posttranslationally Modified Peptide Genes with Pyrroloquinoline Alkaloids  Peter A. Jordan,
Volume 13, Issue 3, Pages (March 2006)
Volume 15, Issue 9, Pages (September 2008)
Volume 17, Issue 2, Pages (February 2010)
Volume 19, Issue 3, Pages (March 2012)
Volume 13, Issue 7, Pages (July 2006)
Volume 20, Issue 10, Pages (October 2013)
Volume 14, Issue 9, Pages (September 2007)
Volume 22, Issue 6, Pages (June 2015)
Presentation transcript:

N-Carbamoylation of 2,4-Diaminobutyrate Reroutes the Outcome in Padanamide Biosynthesis  Yi-Ling Du, Doralyn S. Dalisay, Raymond J. Andersen, Katherine S. Ryan  Chemistry & Biology  Volume 20, Issue 8, Pages 1002-1011 (August 2013) DOI: 10.1016/j.chembiol.2013.06.013 Copyright © 2013 Elsevier Ltd Terms and Conditions

Chemistry & Biology 2013 20, 1002-1011DOI: (10. 1016/j. chembiol. 2013 Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 1 Padanamide Biosynthetic Pathway (A) Structures of padanamides and actinoramides. (B) Padanamide biosynthetic gene cluster. (C) Proposed biosynthetic route to the padanamides and actinoramides. (i) Hybrid NRPS/PKS assembly of the N-terminal aa of the padanamides. (ii) Biosynthesis of methoxymalonyl-PadG (top) and l-Aub (bottom). (iii) Biosynthesis of l-Dab and N-acetyl-l-2,4-diaminobutyrate from l-aspartate-4-semialdehyde. (iv) Formation of padanamide A, padanamide B, and actinoramide B using TE-catalyzed cyclization with amide nitrogens as nucleophiles. See also Figure S1 and Table S2. Chemistry & Biology 2013 20, 1002-1011DOI: (10.1016/j.chembiol.2013.06.013) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 2 Metabolic Analysis of Engineered Strains (A) Analysis of padanamide production of Streptomyces sp. RJA2928 and its mutants by HPLC (detection wavelength: 211 nm). The peak corresponding to the padanamides is marked with a dashed line (padanamides A and B are not well separated under the current HPLC method). Note that a peak at 14.6 min is present in all strains, including Streptomyces sp. RJA2928. Precursor metabolites may be funneled toward this competing biosynthetic pathway in the absence of a functional padanamide pathway; hence, the increase in intensity of this nonpadanamide peak when padanamide biosynthesis is eliminated. AU, absorbance units; std, standard. (B) Padanamide production from Streptomyces sp. RJA2928 and ΔpadHIJ, Δorf(+1), ΔpadQ, and ΔpadQ + padQ was further analyzed by LC-MS. Selective ion monitoring was used to detect the [M+H]+ ion for padanamide A (m/z = 662) and padanamide B (m/z = 647). The results shows ΔpadHIJ and Δorf(+1) produce padanamides A and B normally, while ΔpadQ only produces padanamide B. See also Figure S2 and Table S1. Chemistry & Biology 2013 20, 1002-1011DOI: (10.1016/j.chembiol.2013.06.013) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 3 Bioinformatic Analysis of PadQ (A) Sequence alignment of PadQ with ornithine and l-Dap carbamoyltransferases. HumOTC, human OTC (AAI07154); MtbOTC, Mycobacterium tuberculosis OTC (UniProtKB/Swiss-Prot: P0A5M8.1); PfuOTC, Pyrococcus furiosus OTC (X99225); and EcoOTC, Escherichia coli OTC (YP_003937659). Boxes indicate the conserved carbamoyl phosphate binding motif STRTR and the ornithine-binding motifs DXXXSMG and HCLP for OTC. VioL (AAP92502), CmnL (ABR67755), and ZmaT (ACM79819) are the putative l-Dap carbamoyltransferases from viomycin, capreomycin, and zwittermicin A biosynthetic pathways, respectively. PfuOTC, Pyrococcus furiosus OTC (X99225). (B) Phylogenetic analysis of PadQ with its homologs. Their substrates are indicated at the right side. See also Figure S5. Chemistry & Biology 2013 20, 1002-1011DOI: (10.1016/j.chembiol.2013.06.013) Copyright © 2013 Elsevier Ltd Terms and Conditions

Figure 4 In Vitro Analysis of Carbamoyltransferase PadQ (A) Purification of PadQ from Rhodococcus sp. RHA1. (B) Monitoring of PadQ-catalyzed carbamoylation of l-Dab by TLC. (C) Analysis of PadQ-catalyzed carbamoylation of l-Dab (indicated by DAB) by LC-MS analysis monitoring the [M+H]+ ion for l-Dab (m/z = 119) and l-Aub (m/z = 162). (i) l-Dab + CP + Boiled PadQ (20 min), (ii) l-Dab + CP + PadQ (0 min), (iii) l-Dab + CP + PadQ (2.5 min), (iv) l-Dab + CP + PadQ (5 min), (v) l-Dab + CP + PadQ (10 min), and (vi) l-Dab + CP + PadQ (20 min). AUB, l-Aub. (D) NMR analysis of purified l-Aub. See also Figure S4. Chemistry & Biology 2013 20, 1002-1011DOI: (10.1016/j.chembiol.2013.06.013) Copyright © 2013 Elsevier Ltd Terms and Conditions