Figure MRI and histology of demyelinating lesion(A) Symmetric T2 hyperintensity in the midbrain with relative sparing of cerebral peduncles. MRI and histology.

Slides:



Advertisements
Similar presentations
Figure 2. A patient with multifocal nodular lesions diagnosed with CNS tuberculosis A patient with multifocal nodular lesions diagnosed with CNS tuberculosis.
Advertisements

Figure 1 Initial brain imaging (A–C) patient 1; (D–F) patient 2; (G–I) patient 3; (J–L) patient 4; and (M) patient 2. Initial brain imaging (A–C) patient.
Figure 3 Brain MRI findings in patients with MOG-Ab Extensive brain lesions with large diameter (A and B), posterior reversible encephalopathy–like lesions.
Figure 1 Box plot of the venous diameter in lesions
Figure 1 Muscle biopsy from a patient with a slowly progressive (24 years) HMGCR antibody–associated myopathy syndrome (A) Hematoxylin & eosin stain, (B)
Figure 1 Brain MRI findings in the present case
Figure 4. Brain imaging and neuropathologic demonstration of Epstein-Barr virus (EBV) encephalitis in patient PT-10 Brain imaging and neuropathologic demonstration.
Figure MRI of anti-MOG-IgG–associated myelitis
Figure 2 Orbital MRI findings One-third of myelin oligodendrocyte glycoprotein antibody–positive patients revealed extensive enhancement patterns that.
Figure Vertebral artery angiogram and tissue pathology
Figure Neuroimaging and pathology
Figure 1 Coronal MRI images showing the evolution of white matter abnormality and atrophy of patient 1 Coronal MRI images showing the evolution of white.
Figure 1 Percent positivity by clinical feature Overall, 6
Figure Brain MRI of the patient throughout the disease course(A) Brain MRI at the time of cerebral toxoplasmosis diagnosis (a) and after 1 month of toxoplasmosis.
Figure 3 Example of venous narrowing
Figure Immune checkpoint inhibitor–induced encephalitis before and after treatment with natalizumab Immune checkpoint inhibitor–induced encephalitis before.
Figure 1 Histopathologic features of a chronic active and a chronic plaque in the MS brain Histopathologic features of a chronic active and a chronic plaque.
Figure 1 Muscle biopsy images demonstrating a pauci-immune necrotizing autoimmune myopathy in illustrative cases 1 and 2 (A–D) Case 1 deltoid muscle. Muscle.
Figure Radiographic and histopathologic findings (A) Brain MRI at presentation shows multiple areas of T2 hyperintensity in the mesial temporal lobes,
Figure 1. Prebiopsy and postbiopsy MRI
Figure Clinical presentation of daclizumab side effects with skin rash and meningoencephalomyelitis Clinical presentation of daclizumab side effects with.
Figure 1. Brain MRI follow-up of Sjögren syndrome–associated type II mixed cryoglobulinemic cerebral vasculitis treated with rituximab Brain MRI follow-up.
Figure 3. MRI of compressive optic neuropathy caused by dural lesions in sarcoidosis MRI of compressive optic neuropathy caused by dural lesions in sarcoidosis.
Figure Brain MRI and biopsy specimens from the pontine lesion
Figure 5. A patient with focal pachymeningitis and Tolosa-Hunt-like syndrome A patient with focal pachymeningitis and Tolosa-Hunt-like syndrome (A) Neuroimaging.
Figure Radiologic and histopathologic findings in a patient with IgG4-related intracranial hypertrophic pachymeningitis(A–D) Radiologic findings over 10.
Figure 2 Brain biopsy Brain biopsy (A) Double staining with anti-aquaporin-4 (AQP4) antibody (dark green) and Luxol fast blue (blue) is shown. Loss of.
Figure Nuclear Nrf2 expression after fumarate therapy A new left occipital fluid-attenuated inversion recovery hyperintense (A), T1 hypointense (B), and.
Figure 1 MRI, pathology, and EEG findings(A) Axial fluid-attenuated inversion recovery (FLAIR) MRI sequences of the brain showing right frontal and parietal.
Figure 1 Cerebral MRI during the disease course Cerebral MRI with multiple cerebral supratentorial lesions during the disease course: periventricular lesions.
Figure 4 Comparison of 7.0T and 3.0T MRI (patients 5 and 6)‏
Figure 1 Neuropathologic examination of brain areas with normal MRI appearance and with gadolinium enhancement (patient 1)‏ Neuropathologic examination.
Figure 2 Neuropathology of PML lesions in a patient with MS treated with fingolimod Neuropathology of PML lesions in a patient with MS treated with fingolimod.
Figure Four months after symptom onset(A) Two fluorodeoxyglucose positive left inguinal lymph nodes. Four months after symptom onset(A) Two fluorodeoxyglucose.
Figure 2 Exemplary MRI of a patient with contrast enhancement on postcontrast FLAIR MRI of a 54-year-old patient with viral meningitis caused by varicella-zoster.
Figure 2 Histochemical and immunohistochemical staining and electron microscopic examination of structures in the brain biopsy Hematoxylin & eosin staining.
Figure 4 Neuropathology of MOG and AQP4 antibody–associated demyelinating lesions in the brain The biopsy specimen revealed a small actively demyelinating.
Figure Chronic inflammatory demyelinating polyneuropathy–like picture in patient with proven Creutzfeldt-Jakob disease (A) Example of partial conduction.
Figure MRI and neuropathologic characteristics of the tumefactive demyelinating lesion in our patient MRI and neuropathologic characteristics of the tumefactive.
Figure 3 Ultra-high-field MRI at 7.0T (patients 5 and 6)‏
Figure Radiologic and pathologic findings Fluid-attenuated inversion recovery (FLAIR) sequence with a single large T2-hyperintense signal involving the.
Figure 2 Example of venous narrowing
Figure 2 Lesion localization visualized in the top view of the model
Figure 1 MRI of inflammatory myelitis before and after treatment
Figure 1 Radiologic features of human myelin oligodendrocyte glycoprotein immunoglobulin G–positive patients with cranial nerve involvement Radiologic.
Figure 3. Brain imaging and neuropathologic studies in patient PT-5 diagnosed with progressive multifocal leukoencephalopathy Brain imaging and neuropathologic.
Figure 2 Cerebral and spinal MRI (A) Restricted diffusion of both optic nerves (arrows) on diffusion-weighted and apparent diffusion coefficient imaging.
Figure 2 Pathologic diagnosis of CAA-related vascular inflammation Hematoxylin & eosin staining (A) revealed focal intramural inflammation including lymphocytes,
Figure Postcontrast axial and coronal brain MRI in a patient with CLIPPERS treated with hydroxychloroquineT1-weighted spin echo post IV gadolinium contrast.
Figure 3 Correlation of lipid indexes to MRI measures of disease severity in multiple sclerosis Correlation of lipid indexes to MRI measures of disease.
Figure 1 Evolution of MRI findings during interleukin (IL)–7 therapy
Figure 1 Imaging of disease onset and treatment response Repeat MRI scans including fluid-attenuated inversion recovery (FLAIR) (A) and T2 fast field echo.
Figure 3 Clinical and MRI outcomes by quartiles of increasing CD56bright natural killer (NK) cell countsAll data are mean and upper 95% confidence interval.
Figure 4 Autopsy immunochemistry results
Figure Leptomeningeal inflammationPostcontrast T1-weighted MRI: abnormal leptomeningeal enhancement over the frontoparietal lobes and interhemispheric.
Figure 1 Radiologic features of patients with white matter syndromes in association with NMDA receptor antibodies Radiologic features of patients with.
Figure 2 Pre- and posttreatment contrast-enhanced MRI of second toxoplasmosis lesion in case 1(A) Contrast-enhanced MRI demonstrated a second ring-enhancing.
Figure 1 Brain MRI Brain MRI (A) Axial fluid-attenuated inversion-recovery images show perilesional edema in both cerebellar hemisphere and hypointense.
Figure 1 Peripheral blood lymphocyte counts during dose titrationB-lymphocyte (CD19+; A) and total lymphocyte (CD45+; B) counts (cells/µL) in peripheral.
Figure Spinal cord imaging (A, B) Sagittal and axial T2-weighted cervical spine MRI demonstrating hyperintensities in the central gray matter of patient.
Figure 2 Brain biopsy of 2 patients with anti-MOG encephalitis initially misdiagnosed with small vessel CNS vasculitis Brain biopsy of 2 patients with.
Yian Gu et al. Neurol Neuroimmunol Neuroinflamm 2019;6:e521
Ingo Kleiter et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e504
Hematoxylin-eosin (A) and luxol fast blue (B) staining of the lesion seen in the cerebellum of case 2. Hematoxylin-eosin (A) and luxol fast blue (B) staining.
Gitanjali Das et al. Neurol Neuroimmunol Neuroinflamm 2018;5:e453
Figure Serial brain MRI of the patient with encephalitis and spontaneous recovery accompanying IgLON5 autoimmunity Serial brain MRI of the patient with.
Figure 1 MRIs (case 1)‏ MRIs (case 1) An enlarging T2 lesion in the cerebral white matter near the angular gyrus and a new lesion in the left middle cerebellar.
Figure 2 MRIs (cases 2 and 3)‏
Figure FDG-PET, lymph node biopsy, and brain MRI
Figure 1 Axial FLAIR brain MRI obtained on admission to the ICU demonstrated (A1) old hyperintense subcortical lesions (arrowhead), new superimposed on.
Presentation transcript:

Figure MRI and histology of demyelinating lesion(A) Symmetric T2 hyperintensity in the midbrain with relative sparing of cerebral peduncles. MRI and histology of demyelinating lesion(A) Symmetric T2 hyperintensity in the midbrain with relative sparing of cerebral peduncles. (B) Discrete T2-hyperintense lesion (biopsied subsequently) in the right temporal lobe. (C) T1 postcontrast image (arrow) showing enhancement of brainstem lesions. (D) The right temporal lesion is relatively sharply circumscribed and devoid of myelin (arrow), Luxol fast blue (myelin stain), 200×. (E) The lesion consists of large numbers of foamy macrophages (green arrow) and acute intraparenchymal hemorrhages (black arrow), hematoxylin and eosin stain, 400×. (F) Enlarging T2-hyperintense lesions in the midbrain and right temporal lobe immediately after biopsy. Shamik Bhattacharyya et al. Neurol Neuroimmunol Neuroinflamm 2015;2:e90 © 2015 American Academy of Neurology