Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S.

Slides:



Advertisements
Similar presentations
The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Advertisements

Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
B. Bai, Y. Li  Osteoarthritis and Cartilage 
Early genetic restoration of lubricin expression in transgenic mice mitigates chondrocyte peroxynitrite release and caspase-3 activation  K.M. Larson,
BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium- derived progenitor cells cultured in three-dimensional alginate hydrogel 
H. J. Pulkkinen, V. Tiitu, P. Valonen, J. S. Jurvelin, M. J. Lammi, I
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal.
Xibin Wang, Ph. D. , Paul A. Manner, M. D. , Alan Horner, Ph. D
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Possible involvement of the oxidized low-density lipoprotein/lectin-like oxidized low- density lipoprotein receptor-1 system in pathogenesis and progression.
The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Differential proteome analysis of normal and osteoarthritic chondrocytes reveals distortion of vimentin network in osteoarthritis  S. Lambrecht, M.Pharm.,
Articular chondrocytes derived from distinct tissue zones differentially respond to in vitro oscillatory tensile loading  E.J. Vanderploeg, Ph.D., C.G.
Localization of bone morphogenetic protein-2 in human osteoarthritic cartilage and osteophyte  T. Nakase, M.D., Ph.D., T. Miyaji, M.D., T. Tomita, M.D.,
Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5–hyaluronan complexes in articular cartilages 
R. Piva, E. Lambertini, C. Manferdini, C. Capanni, L. Penolazzi, E
Glucosamine sulfate reduces experimental osteoarthritis and nociception in rats: association with changes of mitogen-activated protein kinase in chondrocytes 
H. Moriyama, Ph. D. , O. Yoshimura, Ph. D. , S. Kawamata, Ph. D. , K
Fibroblast growth factor-2 induced chondrocyte cluster formation in experimentally wounded articular cartilage is blocked by soluble Jagged-1  I.M. Khan,
R.E. Fransès, D.F. McWilliams, P.I. Mapp, D.A. Walsh 
W. Wang, S. Wei, M. Luo, B. Yu, J. Cao, Z. Yang, Z. Wang, M. B
Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage  Peggy M.
Insulin-like growth factor (IGF)-binding protein-3 (IGFBP-3) is closely associated with the chondrocyte nucleus in human articular cartilage  E.B. Hunziker,
Increase in excitatory amino acid concentration and transporters expression in osteoarthritic knees of anterior cruciate ligament transected rabbits 
Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms.
X. Guo, W.-J. Ma, F. Zhang, F.-L. Ren, C.-J. Qu, M.J. Lammi 
Cyclical articular joint loading leads to cartilage thinning and osteopontin production in a novel in vivo rabbit model of repetitive finger flexion 
Attenuation of subchondral bone abnormal changes in osteoarthritis by inhibition of SDF-1 signaling  Y. Chen, S. Lin, Y. Sun, J. Guo, Y. Lu, C.W. Suen,
The layered structure of the articular surface
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium  A. Eitner, J. Pester, S. Nietzsche, G.O.
Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that.
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
Oxidative stress induces expression of osteoarthritis markers procollagen IIA and 3B3(−) in adult bovine articular cartilage  I.M. Khan, Ph.D., S.J. Gilbert,
C. Wu, J. Zheng, X. Yao, H. Shan, Y. Li, P. Xu, X. Guo 
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
Osteoarthritis-like damage of cartilage in the temporomandibular joints in mice with autoimmune inflammatory arthritis  S. Ghassemi-Nejad, T. Kobezda,
Characterization of viscoelastic properties of normal and osteoarthritic chondrocytes in experimental rabbit model  Q.Y. Zhang, Ph.D., X.H. Wang, M.D.,
A histological comparison of the repair tissue formed when using either Chondrogide® or periosteum during autologous chondrocyte implantation  H.S. McCarthy,
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
Z. Lin, M. B. , N. J. Pavlos, B. Sc. (Hons. ), Ph. D. , M. A. Cake, B
L. C. Davies, B. Sc. , Ph. D. , E. J. Blain, B. Sc. , Ph. D. , B
Evidence for functional ATP-sensitive (KATP) potassium channels in human and equine articular chondrocytes  A. Mobasheri, B.Sc., A.R.C.S. (Hons.), M.Sc.,
Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application  L. Wang, M.S., M. Lazebnik,
Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical.
Molecular differentiation between osteophytic and articular cartilage – clues for a transient and permanent chondrocyte phenotype  K. Gelse, A.B. Ekici,
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
Osteoarthritis development in novel experimental mouse models induced by knee joint instability  S. Kamekura, M.D., K. Hoshi, M.D., Ph.D., T. Shimoaka,
Chondrocytes attach to hyaline or calcified cartilage and bone1 1 Funding Support: This work was supported by Genzyme Biosurgery, Boston, USA and CIHR. 
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
Mevastatin reduces cartilage degradation in rabbit experimental osteoarthritis through inhibition of synovial inflammation  Y. Akasaki, M.D., S. Matsuda,
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
Heinz-J. Hausser, Ph.D., Ralf Decking, M.D., Rolf E. Brenner, M.D. 
Articular cartilage metabolism in patients with Kashin–Beck Disease: an endemic osteoarthropathy in China  J. Cao, M.D., S. Li, M.D., M.Sc., Z. Shi, M.Sc.,
Differential transcriptome analysis of intraarticular lesional vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology  M. Geyer,
Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis  B.Y. Chan, E.S. Fuller, A.K. Russell, S.M. Smith, M.M. Smith,
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
Microstructural analysis of collagen and elastin fibres in the kangaroo articular cartilage reveals a structural divergence depending on its local mechanical.
Chondroitin sulfate and/or glucosamine hydrochloride for Kashin-Beck disease: a cluster-randomized, placebo-controlled study  J. Yue, M. Yang, S. Yi,
Altered expression of chondroitin sulfate structure modifying sulfotransferases in the articular cartilage from adult osteoarthritis and Kashin-Beck disease 
Cellular origin of neocartilage formed at wound edges of articular cartilage in a tissue culture experiment  P.K. Bos, M.D., Ph.D., N. Kops, B.Sc., J.A.N.
Estrogen reduces mechanical injury-related cell death and proteoglycan degradation in mature articular cartilage independent of the presence of the superficial.
Identification of opticin, a member of the small leucine-rich repeat proteoglycan family, in human articular tissues: a novel target for MMP-13 in osteoarthritis 
L. Xu, I. Polur, C. Lim, J.M. Servais, J. Dobeck, Y. Li, B.R. Olsen 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Osteoarthritis-like damage of cartilage in the temporomandibular joints in mice with autoimmune inflammatory arthritis  S. Ghassemi-Nejad, T. Kobezda,
Presentation transcript:

Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S. Li, H. Sun, Z. Zhang, Q. Fu, J. Li, J. Wang, C.E. Hughes, B. Caterson, J. Cao  Osteoarthritis and Cartilage  Volume 22, Issue 7, Pages 986-995 (July 2014) DOI: 10.1016/j.joca.2014.05.012 Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 H&E staining of finger joint articular cartilage from a normal child (5-year-old male from a non-KBD area) and a KBD patient (4-year-old with clinical manifestations of first degree KBD). A: Control cartilage shows no chondronecrosis; B: KBD cartilage shows chondronecrosis with “red ghost” outlines of the chondrocyte remains in the deep zone (black arrow); C: The amplification of the red box in B. The presence of necrotic cells (red ghost remains) and cell cluster formation nearby (circled). In addition, the disappearance of chondrocytes in the deep zone of articular cartilage was also observed (Stars). Scale bars: 20 μm; D: Quantification of the cell density in parallel areas between Control and KBD samples. The living cell numbers were significantly decreased in upper, middle and deep zones in KBD cartilage compared with the control cartilage. Osteoarthritis and Cartilage 2014 22, 986-995DOI: (10.1016/j.joca.2014.05.012) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Toluidine blue staining of articular cartilage in finger joints from a normal child (5-year-old male from a non-KBD area) and a KBD patient (4-year-old with clinical manifestations of first degree KBD). A: Normal children samples show strong Toluidine blue staining in all of the different zones of the articular cartilage. B: KBD children samples show a significant decrease in Toluidine blue staining throughout the whole depth of the articular cartilage when compared with the Control cartilage samples. Scale bars: 20 μm. Osteoarthritis and Cartilage 2014 22, 986-995DOI: (10.1016/j.joca.2014.05.012) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 PAPSS2 immunostaining observed in the articular cartilage from normal and KBD children (positive staining is red). Representative sections of superficial, middle and deep zones in articular cartilage from finger joints of normal (A, B & C) and KBD children (D, E & F) are shown; i & ii show negative control staining in which primary antibody was replaced by only PBS or PBS containing anti-mouse IgG, respectively. Scale bars: 20 μm. Osteoarthritis and Cartilage 2014 22, 986-995DOI: (10.1016/j.joca.2014.05.012) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 PAPST1 immunostaining in the articular cartilage from normal and KBD children (positive staining is red). Representative sections of superficial, middle and deep zones in articular cartilage from finger joints of normal (A, B & C) and KBD children (D, E & F) are shown; i & ii show negative control staining in which primary antibody was replaced by only PBS or PBS containing anti-rabbit IgG, respectively. Scale bars: 20 μm. Osteoarthritis and Cartilage 2014 22, 986-995DOI: (10.1016/j.joca.2014.05.012) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 CHST15 immunostaining in the articular cartilage from normal and KBD children (positive staining is red). Representative sections of superficial, middle and deep zones in articular cartilage from finger joints of normal (A, B & C) and KBD children (D, E & F) are shown. Scale bars: 20 μm. Osteoarthritis and Cartilage 2014 22, 986-995DOI: (10.1016/j.joca.2014.05.012) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Immunostaining for ARSB in the articular cartilage from normal and KBD children. Representative sections of articular cartilage from finger joints of both normal and KBD children were analyzed. A, B & C: weak ARSB positive staining was observed in the Control cartilage. D & E: KBD children cartilage show strong ARSB immunostaining. F: ARSB immunostaining is absent; i & ii show negative control staining in which primary antibody was replaced by only PBS or PBS containing anti-goat IgG, respectively. Scale bars: 20 μm. Osteoarthritis and Cartilage 2014 22, 986-995DOI: (10.1016/j.joca.2014.05.012) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Immunostaining for GALNS in the articular cartilage from normal and KBD children. Representative sections of articular cartilage from finger joints of both normal child cartilage (A, B & C) and KBD child cartilage (D, E & F), superficial, middle and deep zones, respectively. There are few cells with GALNS positive staining in the superficial and middle zones of articular cartilage from normal children (A & B) whereas KBD children cartilage shows strong GALNS positive staining in these regions (D & E). F: GALNS immunostaining is almost completely absent. Cell nuclei are counterstained by Hematoxylin (blue). Scale bars: 20 μm. Osteoarthritis and Cartilage 2014 22, 986-995DOI: (10.1016/j.joca.2014.05.012) Copyright © 2014 Osteoarthritis Research Society International Terms and Conditions