Bonding: General Concepts

Slides:



Advertisements
Similar presentations
Chemical Bonding I: Basic Concepts
Advertisements

1 When Atoms Meet. 2 Bonding Forces  Electron – electron repulsive forces  Nucleus – nucleus repulsive forces  Electron – necleus attractive forces.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Chemical Bonding Chapter 6 Sections 1, 2, and 5. Chemical Bonds A chemical bond is the mutual electrical attraction between the nuclei and valence electrons.
Chemical Bonding I: Basic Concepts Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 5 Compounds and Their Bonds
I Chemical Bonding. Chemical Bond  attractive force between atoms or ions that binds them together as a unit  bonds form in order to…  decrease potential.
Chapter 11: Chemical Bonding Chemistry 1020: Interpretive chemistry Andy Aspaas, Instructor.
Chemical Bonding I: Basic Concepts Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 11: Chemical Bonding Chemistry 1020: Interpretive chemistry Andy Aspaas, Instructor.
Chemical Bonding I: Basic Concepts Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint Lecture.
Chemical Bonding I: Basic Concepts Chapter 8. Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons that.
Chemical Bonding I: Basic Concepts Chapter 4 Adapted from Chang Ninth Edition – Chapter 9 Powerpoint.
Chemical Bonding I: Basic Concepts Chapter 8. Bonding in Solids In crystalline solids atoms are arranged in a very regular pattern. Amorphous solids are.
Chemical Bonding I: Basic Concepts Chapter 9. Intermolecular Forces 11.2 Intermolecular forces are attractive forces between molecules. Intramolecular.
1 Chapter 10 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chemical Bonding II: Molecular Geometry and Hybridization.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Chemical Bonding I: Basic Concepts Chapter 9. Intermolecular Forces 11.2 Intermolecular forces are attractive forces between molecules. Intramolecular.
Chemical Bonding I: Basic Concepts Chapter 7 Part 1.
Chemical Bonding I: The Covalent Bond Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemical Bonding I: Basic Concepts Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemical Bonding I: Basic Concepts Chapter Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons.
IIIIII I. Lewis Diagrams Molecular Structure. A. Octet Rule n Remember…  Most atoms form bonds in order to have 8 valence electrons.
Chemical Bonding I: Basic Concepts
Chemical Bonding I: Basic Concepts Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Predict the geometry of the molecule from the electrostatic repulsions between the electron (bonding and nonbonding) pairs. Valence shell electron pair.
Chapter 6 NOR AKMALAZURA JANI CHM 138 BASIC CHEMISTRY.
Chemical Bonding I: Basic Concepts Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chemical bonds. Bonding, the way atoms are attracted to each other to form molecules, determines nearly all of the chemical properties we see. Chemical.
Chemical Bonding I: Basic Concepts Chapter Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons.
Chemical Bonding I: Basic Concepts Chapter 9 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Unit 6: Chemical Bonding and Intermolecular Forces
When Atoms Meet EO4 Bonding.
Types of chemical bonds
Chemical Bonding I Basic Concept
Chemical Bonding I: Basic Concepts
Chemical Bonding I: Basic Concepts
5.1 Ionic Bonds: Chemical Bonding
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Chemical Bonding I Basic Concept
Chapter 12 Chemical Bonding.
Chemical Bonding Ionic and Covalent Bond
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 9 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10.
Chemical Bonding I: The Covalent Bond
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Molecular Geometry Cocaine
Unit 2.3: Chemical Bonding
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Chemical Bonding I: Basic Concepts
Chemical Bonding I: Basic Concepts
Chemical Bonding II: Molecular Geometry
CHEMICAL BONDING Cocaine
Lewis structures Page 52 in notebook
Chemical Bonding I: Basic Concepts
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 9 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Valence shell electron pair repulsion (VSEPR) model:
Chemical Bonding I: The Covalent Bond
Chapter 5 Molecular Compounds.
Drawing Lewis Structures
Bonding: General Concepts
ChemicalBonding Honors Only Problems and questions —
Chemical Bonding I: Basic Concepts
Chemical Bonding I: The Covalent Bond
Chemical Bonding and Interactions
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Chapter 12 Chemical bonding.
Presentation transcript:

Bonding: General Concepts Chapter 8 Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons that particpate in chemical bonding. Group # of valence e- e- configuration 1A 1 ns1 2A 2 ns2 3A 3 ns2np1 4A 4 ns2np2 5A 5 ns2np3 6A 6 ns2np4 7A 7 ns2np5

Lewis Dot Symbols for the Representative Elements & Noble Gases

The Ionic Bond Ionic bond: the electrostatic force that holds ions together in an ionic compound. + F Li+ F - Li 1s22s1 1s22s22p5 1s2 1s22s22p6 [He] [Ne] Li Li+ + e- LiF e- + F - F - Li+ + Li+

Electrostatic (Lattice) Energy Lattice energy (U) is the energy required to completely separate one mole of a solid ionic compound into gaseous ions. E is the potential energy Q+ is the charge on the cation E = k Q+Q- r Q- is the charge on the anion r is the distance between the ions Compound Lattice Energy (kJ/mol) Lattice energy increases as Q increases and/or as r decreases. Q: +2,-1 Q: +2,-2 MgF2 MgO 2957 3938 LiF LiCl 1036 853 r F- < r Cl-

Born-Haber Cycle for Determining Lattice Energy DHoverall = DH1 + DH2 + DH3 + DH4 + DH5 o

Sodium Chloride: A Common and Important Compund Chemistry In Action: Sodium Chloride: A Common and Important Compund Solar Evaporation for Salt Mining Salt

Why should two atoms share electrons? A covalent bond is a chemical bond in which two or more electrons are shared by two atoms. Why should two atoms share electrons? 7e- 7e- 8e- 8e- F F + F Lewis structure of F2 lone pairs F single covalent bond single covalent bond F

Lewis structure of water single covalent bonds 2e- 8e- 2e- H + O + H O H or Double bond – two atoms share two pairs of electrons 8e- 8e- 8e- double bonds O C or O C double bonds Triple bond – two atoms share three pairs of electrons triple bond 8e- N 8e- or N triple bond

Lengths of Covalent Bonds Bond Lengths Triple bond < Double Bond < Single Bond

Polar covalent bond or polar bond is a covalent bond with greater electron density around one of the two atoms H F electron rich region electron poor region e- poor e- rich F H d+ d-

Electron Affinity - measurable, Cl is highest Electronegativity is the ability of an atom to attract toward itself the electrons in a chemical bond. Electron Affinity - measurable, Cl is highest X (g) + e- X-(g) Electronegativity - relative, F is highest

The Electronegativities of Common Elements

Variation of Electronegativity with Atomic Number

Classification of bonds by difference in electronegativity Bond Type Covalent  2 Ionic 0 < and <2 Polar Covalent Increasing difference in electronegativity Covalent share e- Polar Covalent partial transfer of e- Ionic transfer e-

Classify the following bonds as ionic, polar covalent, or covalent: The bond in CsCl; the bond in H2S; and the NN bond in H2NNH2. Cs – 0.7 Cl – 3.0 3.0 – 0.7 = 2.3 Ionic H – 2.1 S – 2.5 2.5 – 2.1 = 0.4 Polar Covalent N – 3.0 N – 3.0 3.0 – 3.0 = 0 Covalent

Dipole Moments and Polar Molecules H F electron rich region electron poor region d+ d- m = Q x r Q is the charge r is the distance between charges 1 D = 3.36 x 10-30 C m

Behavior of Polar Molecules field off field on

Bond moments and resultant dipole moments in NH3 and NF3.

Which of the following molecules have a dipole moment? H2O, CO2, SO2, and CF4 O H S O dipole moment polar molecule dipole moment polar molecule C F C O no dipole moment nonpolar molecule no dipole moment nonpolar molecule

Does BF3 have a dipole moment?

Does CH2Cl2 have a dipole moment?

Writing Lewis Structures Draw skeletal structure of compound showing what atoms are bonded to each other. Put least electronegative element in the center. Count total number of valence e-. Add 1 for each negative charge. Subtract 1 for each positive charge. Complete an octet for all atoms except hydrogen If structure contains too many electrons, form double and triple bonds on central atom as needed.

5 + (3 x 7) = 26 valence electrons Write the Lewis structure of nitrogen trifluoride (NF3). Step 1 – N is less electronegative than F, put N in center Step 2 – Count valence electrons N - 5 (2s22p3) and F - 7 (2s22p5) 5 + (3 x 7) = 26 valence electrons Step 3 – Draw single bonds between N and F atoms and complete octets on N and F atoms. Step 4 - Check, are # of e- in structure equal to number of valence e- ? 3 single bonds (3x2) + 10 lone pairs (10x2) = 26 valence electrons F N

4 + (3 x 6) + 2 = 24 valence electrons Write the Lewis structure of the carbonate ion (CO32-). Step 1 – C is less electronegative than O, put C in center Step 2 – Count valence electrons C - 4 (2s22p2) and O - 6 (2s22p4) -2 charge – 2e- 4 + (3 x 6) + 2 = 24 valence electrons Step 3 – Draw single bonds between C and O atoms and complete octet on C and O atoms. Step 4 - Check, are # of e- in structure equal to number of valence e- ? 3 single bonds (3x2) + 10 lone pairs (10x2) = 26 valence electrons Step 5 - Too many electrons, form double bond and re-check # of e- 2 single bonds (2x2) = 4 1 double bond = 4 8 lone pairs (8x2) = 16 Total = 24 O C

( ) - - Two possible skeletal structures of formaldehyde (CH2O) H C O An atom’s formal charge is the difference between the number of valence electrons in an isolated atom and the number of electrons assigned to that atom in a Lewis structure. formal charge on an atom in a Lewis structure = total number of valence electrons in the free atom - total number of nonbonding electrons - 1 2 total number of bonding electrons ( ) The sum of the formal charges of the atoms in a molecule or ion must equal the charge on the molecule or ion.

( ) - -1 +1 H C O = 1 2 = 4 - 2 - ½ x 6 = -1 = 6 - 2 - ½ x 6 = +1 C – 4 e- O – 6 e- 2H – 2x1 e- 12 e- 2 single bonds (2x2) = 4 1 double bond = 4 2 lone pairs (2x2) = 4 Total = 12 H C O formal charge on an atom in a Lewis structure = 1 2 total number of bonding electrons ( ) total number of valence electrons in the free atom - total number of nonbonding electrons formal charge on C = 4 - 2 - ½ x 6 = -1 formal charge on O = 6 - 2 - ½ x 6 = +1

( ) - H C O = 1 2 = 4 - 0 - ½ x 8 = 0 = 6 - 4 - ½ x 4 = 0 C – 4 e- H C O C – 4 e- O – 6 e- 2H – 2x1 e- 12 e- 2 single bonds (2x2) = 4 1 double bond = 4 2 lone pairs (2x2) = 4 Total = 12 formal charge on an atom in a Lewis structure = 1 2 total number of bonding electrons ( ) total number of valence electrons in the free atom - total number of nonbonding electrons formal charge on C = 4 - 0 - ½ x 8 = 0 formal charge on O = 6 - 4 - ½ x 4 = 0

Formal Charge and Lewis Structures For neutral molecules, a Lewis structure in which there are no formal charges is preferable to one in which formal charges are present. Lewis structures with large formal charges are less plausible than those with small formal charges. Among Lewis structures having similar distributions of formal charges, the most plausible structure is the one in which negative formal charges are placed on the more electronegative atoms. Which is the most likely Lewis structure for CH2O? H C O -1 +1 H C O

A resonance structure is one of two or more Lewis structures for a single molecule that cannot be represented accurately by only one Lewis structure. O + - O + - What are the resonance structures of the carbonate (CO32-) ion? O C - O C - O C -

Exceptions to the Octet Rule The Incomplete Octet Be – 2e- 2H – 2x1e- 4e- BeH2 H Be B – 3e- 3F – 3x7e- 24e- 3 single bonds (3x2) = 6 9 lone pairs (9x2) = 18 Total = 24 F B BF3

Exceptions to the Octet Rule Odd-Electron Molecules N – 5e- O – 6e- 11e- NO N O The Expanded Octet (central atom with principal quantum number n > 2) S F S – 6e- 6F – 42e- 48e- 6 single bonds (6x2) = 12 18 lone pairs (18x2) = 36 Total = 48 SF6

Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the electron (bonding and nonbonding) pairs. Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB2 2 linear linear B

0 lone pairs on central atom Cl Be 2 atoms bonded to central atom

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB2 2 linear linear trigonal planar trigonal planar AB3 3

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB2 2 linear linear AB3 3 trigonal planar AB4 4 tetrahedral tetrahedral

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB2 2 linear linear AB3 3 trigonal planar AB4 4 tetrahedral tetrahedral trigonal bipyramidal trigonal bipyramidal AB5 5

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB2 2 linear linear AB3 3 trigonal planar AB4 4 tetrahedral tetrahedral AB5 5 trigonal bipyramidal AB6 6 octahedral octahedral

bonding-pair vs. bonding pair repulsion lone-pair vs. lone pair repulsion lone-pair vs. bonding >

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry trigonal planar trigonal planar AB3 3 trigonal planar AB2E 2 1 bent

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB4 4 tetrahedral tetrahedral trigonal pyramidal AB3E 3 1 tetrahedral

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB4 4 tetrahedral tetrahedral AB3E 3 1 tetrahedral trigonal pyramidal AB2E2 2 2 tetrahedral bent

VSEPR trigonal bipyramidal trigonal bipyramidal AB5 5 trigonal Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry trigonal bipyramidal trigonal bipyramidal AB5 5 trigonal bipyramidal distorted tetrahedron AB4E 4 1

VSEPR trigonal bipyramidal trigonal bipyramidal AB5 5 AB4E 4 1 Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry trigonal bipyramidal trigonal bipyramidal AB5 5 AB4E 4 1 trigonal bipyramidal distorted tetrahedron trigonal bipyramidal AB3E2 3 2 T-shaped

VSEPR trigonal bipyramidal trigonal bipyramidal AB5 5 AB4E 4 1 Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry trigonal bipyramidal trigonal bipyramidal AB5 5 AB4E 4 1 trigonal bipyramidal distorted tetrahedron AB3E2 3 2 trigonal bipyramidal T-shaped trigonal bipyramidal AB2E3 2 3 linear

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB6 6 octahedral square pyramidal AB5E 5 1 octahedral

Arrangement of electron pairs VSEPR Class # of atoms bonded to central atom # lone pairs on central atom Arrangement of electron pairs Molecular Geometry AB6 6 octahedral AB5E 5 1 octahedral square pyramidal square planar AB4E2 4 2 octahedral

Predicting Molecular Geometry Draw Lewis structure for molecule. Count number of lone pairs on the central atom and number of atoms bonded to the central atom. Use VSEPR to predict the geometry of the molecule. What are the molecular geometries of SO2 and SF4? S F S O AB4E AB2E distorted tetrahedron bent