ECE 498AL Lecture 2: The CUDA Programming Model

Slides:



Advertisements
Similar presentations
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483, University of Illinois, Urbana-Champaign 1 ECE408 / CS483 Applied Parallel Programming.
Advertisements

Intermediate GPGPU Programming in CUDA
INF5063 – GPU & CUDA Håkon Kvale Stensland iAD-lab, Department for Informatics.
GPU History CUDA. Graphics Pipeline Elements 1. A scene description: vertices, triangles, colors, lighting 2.Transformations that map the scene to a camera.
GPU programming: CUDA Acknowledgement: the lecture materials are based on the materials in NVIDIA teaching center CUDA course materials, including materials.
Prepared 5/24/2011 by T. O’Neil for 3460:677, Fall 2011, The University of Akron.
1 CIS 665: GPU Programming Lecture 2: The CUDA Programming Model.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408, University of Illinois, Urbana-Champaign 1 Programming Massively Parallel Processors Chapter.
Parallel Programming using CUDA. Traditional Computing Von Neumann architecture: instructions are sent from memory to the CPU Serial execution: Instructions.
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign ECE 498AL Lecture 2: The CUDA Programming Model.
ECE/CS 757: Advanced Computer Architecture II Instructor:Mikko H Lipasti Spring 2015 University of Wisconsin-Madison Lecture notes based on slides created.
© David Kirk/NVIDIA and Wen-mei W. Hwu, , SSL 2014, ECE408/CS483, University of Illinois, Urbana-Champaign 1 ECE408 / CS483 Applied Parallel Programming.
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Lectures 7: Threading Hardware in G80.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 Programming Massively Parallel Processors Lecture.
ME964 High Performance Computing for Engineering Applications Most of the time I don't have much fun. The rest of the time I don't have any fun at all.
© David Kirk/NVIDIA and Wen-mei W. Hwu Taiwan, June 30-July 2, 2008 Taiwan 2008 CUDA Course Programming Massively Parallel Processors: the CUDA experience.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 Programming Massively Parallel Processors CUDA.
Introduction to CUDA (1 of 2) Patrick Cozzi University of Pennsylvania CIS Spring 2012.
Introduction to CUDA 1 of 2 Patrick Cozzi University of Pennsylvania CIS Fall 2012.
First CUDA Program. #include "stdio.h" int main() { printf("Hello, world\n"); return 0; } #include __global__ void kernel (void) { } int main (void) {
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE498AL, University of Illinois, Urbana-Champaign 1 Programming Massively Parallel Processors CUDA Threads.
© David Kirk/NVIDIA and Wen-mei W. Hwu Urbana, Illinois, August 10-14, VSCSE Summer School 2009 Many-core processors for Science and Engineering.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 Programming Massively Parallel Processors Lecture.
CUDA in a Nutshell Roger Hoang. But first… Cluster and Lab Details Contact Information.
ME964 High Performance Computing for Engineering Applications CUDA Memory Model & CUDA API Sept. 16, 2008.
CIS 565 Fall 2011 Qing Sun
1 ECE 498AL Lecture 2: The CUDA Programming Model © David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 CS 395 Winter 2014 Lecture 17 Introduction to Accelerator.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Lectures 9: Memory Hardware in G80.
CUDA - 2.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE498AL, University of Illinois, Urbana-Champaign 1 ECE498AL Lecture 3: A Simple Example, Tools, and.
Training Program on GPU Programming with CUDA 31 st July, 7 th Aug, 14 th Aug 2011 CUDA Teaching UoM.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 ECE 498AL Lectures 8: Threading Hardware in G80.
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL1, University of Illinois, Urbana-Champaign Fall 2007 Illinois ECE 498AL1 Programming Massively Parallel.
Jie Chen. 30 Multi-Processors each contains 8 cores at 1.4 GHz 4GB GDDR3 memory offers ~100GB/s memory bandwidth.
Lecture 8-2 : CUDA Programming Slide Courtesy : Dr. David Kirk and Dr. Wen-Mei Hwu and Mulphy Stein.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL, University of Illinois, Urbana-Champaign 1 Programming Massively Parallel Processors Lecture.
Introduction to CUDA (1 of n*) Patrick Cozzi University of Pennsylvania CIS Spring 2011 * Where n is 2 or 3.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483, University of Illinois, Urbana-Champaign 1 ECE408 / CS483 Applied Parallel Programming.
Parallel Programming Basics  Things we need to consider:  Control  Synchronization  Communication  Parallel programming languages offer different.
© David Kirk/NVIDIA and Wen-mei W. Hwu, CS/EE 217 GPU Architecture and Programming Lecture 2: Introduction to CUDA C.
Introduction to CUDA 1 of 2 Patrick Cozzi University of Pennsylvania CIS Fall 2014.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483, University of Illinois, Urbana-Champaign 1 ECE 8823A GPU Architectures Module 2: Introduction.
1 The CUDA Programming Model © David Kirk/NVIDIA and Wen-mei W. Hwu, ECE 498AL Spring 2010, University of Illinois, Urbana-Champaign.
© David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483, University of Illinois, Urbana-Champaign 1 ECE408 / CS483 Applied Parallel Programming.
3/12/2013Computer Engg, IIT(BHU)1 CUDA-3. GPGPU ● General Purpose computation using GPU in applications other than 3D graphics – GPU accelerates critical.
Summer School s-Science with Many-core CPU/GPU Processors Lecture 2 Introduction to CUDA © David Kirk/NVIDIA and Wen-mei W. Hwu Braga, Portugal, June 14-18,
Computer Engg, IIT(BHU)
GPU Programming with CUDA
ME964 High Performance Computing for Engineering Applications
CS427 Multicore Architecture and Parallel Computing
Programming Massively Parallel Graphics Processors
ECE 498AL Spring 2010 Lectures 8: Threading & Memory Hardware in G80
Slides from “PMPP” book
© David Kirk/NVIDIA and Wen-mei W. Hwu,
ECE/CS 757: Advanced Computer Architecture II GPGPUs
© David Kirk/NVIDIA and Wen-mei W. Hwu,
L4: Memory Hierarchy Optimization II, Locality and Data Placement
Programming Massively Parallel Graphics Processors
© David Kirk/NVIDIA and Wen-mei W. Hwu,
ECE 8823A GPU Architectures Module 3: CUDA Execution Model -I
Mattan Erez The University of Texas at Austin
ECE 8823A GPU Architectures Module 2: Introduction to CUDA C
© David Kirk/NVIDIA and Wen-mei W. Hwu,
© David Kirk/NVIDIA and Wen-mei W. Hwu,
GPU Lab1 Discussion A MATRIX-MATRIX MULTIPLICATION EXAMPLE.
Mattan Erez The University of Texas at Austin
Parallel Computing 18: CUDA - I
Presentation transcript:

ECE 498AL Lecture 2: The CUDA Programming Model © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

What is GPGPU ? General Purpose computation using GPU in applications other than 3D graphics GPU accelerates critical path of application Data parallel algorithms leverage GPU attributes Large data arrays, streaming throughput Fine-grain SIMD parallelism Low-latency floating point (FP) computation Applications – see //GPGPU.org Game effects (FX) physics, image processing Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting Mark Harris, of Nvidia, runs the gpgpu.org website © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Previous GPGPU Constraints Dealing with graphics API Working with the corner cases of the graphics API Addressing modes Limited texture size/dimension Shader capabilities Limited outputs Instruction sets Lack of Integer & bit ops Communication limited Between pixels Scatter a[i] = p per thread per Shader per Context Input Registers Fragment Program Texture Constants Temp Registers Output Registers FB Memory © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA “Compute Unified Device Architecture” General purpose programming model User kicks off batches of threads on the GPU GPU = dedicated super-threaded, massively data parallel co-processor Targeted software stack Compute oriented drivers, language, and tools Driver for loading computation programs into GPU Standalone Driver - Optimized for computation Interface designed for compute - graphics free API Data sharing with OpenGL buffer objects Guaranteed maximum download & readback speeds Explicit GPU memory management © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

An Example of Physical Reality Behind CUDA CPU (host) GPU w/ local DRAM (device) © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Parallel Computing on a GPU NVIDIA GPU Computing Architecture Via a separate HW interface In laptops, desktops, workstations, servers 8-series GPUs deliver 50 to 200 GFLOPS on compiled parallel C applications GPU parallelism is doubling every year Programming model scales transparently Programmable in C with CUDA tools Multithreaded SPMD model uses application data parallelism and thread parallelism GeForce 8800 Tesla D870 © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign Tesla S870

Extended C Declspecs Keywords Intrinsics Runtime API Function launch global, device, shared, local, constant Keywords threadIdx, blockIdx Intrinsics __syncthreads Runtime API Memory, symbol, execution management Function launch __device__ float filter[N]; __global__ void convolve (float *image) { __shared__ float region[M]; ... region[threadIdx] = image[i]; __syncthreads() image[j] = result; } // Allocate GPU memory void *myimage = cudaMalloc(bytes) // 100 blocks, 10 threads per block convolve<<<100, 10>>> (myimage); © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Extended C cudacc EDG C/C++ frontend Open64 Global Optimizer Integrated source (foo.cu) cudacc EDG C/C++ frontend Open64 Global Optimizer GPU Assembly foo.s CPU Host Code foo.cpp TBD: Define SASS = SPA Assembly language. OCG gcc / cl G80 SASS foo.sass © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Overview CUDA programming model – basic concepts and data types CUDA application programming interface - basic Simple examples to illustrate basic concepts and functionalities Performance features will be covered later © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Programming Model: A Highly Multithreaded Coprocessor The GPU is viewed as a compute device that: Is a coprocessor to the CPU or host Has its own DRAM (device memory) Runs many threads in parallel Data-parallel portions of an application are executed on the device as kernels which run in parallel on many threads Differences between GPU and CPU threads GPU threads are extremely lightweight Very little creation overhead GPU needs 1000s of threads for full efficiency Multi-core CPU needs only a few © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Thread Batching: Grids and Blocks A kernel is executed as a grid of thread blocks All threads share data memory space A thread block is a batch of threads that can cooperate with each other by: Synchronizing their execution For hazard-free shared memory accesses Efficiently sharing data through a low latency shared memory Two threads from two different blocks cannot cooperate Host Kernel 1 Kernel 2 Device Grid 1 Block (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) Grid 2 Block (1, 1) Thread (3, 1) (4, 1) (0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (3, 0) (4, 0) © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign Courtesy: NDVIA

Block and Thread IDs Threads and blocks have IDs So each thread can decide what data to work on Block ID: 1D or 2D Thread ID: 1D, 2D, or 3D Simplifies memory addressing when processing multidimensional data Image processing Solving PDEs on volumes … Device Grid 1 Block (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) Block (1, 1) Thread (3, 1) (4, 1) (0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (3, 0) (4, 0) © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign Courtesy: NDVIA

CUDA Device Memory Space Overview Each thread can: R/W per-thread registers R/W per-thread local memory R/W per-block shared memory R/W per-grid global memory Read only per-grid constant memory Read only per-grid texture memory (Device) Grid Constant Memory Texture Global Block (0, 0) Shared Memory Local Thread (0, 0) Registers Thread (1, 0) Block (1, 0) Host Global, constant, and texture memory spaces are persistent across kernels called by the same application. The host can R/W global, constant, and texture memories © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Global, Constant, and Texture Memories (Long Latency Accesses) Global memory Main means of communicating R/W Data between host and device Contents visible to all threads Texture and Constant Memories Constants initialized by host (Device) Grid Constant Memory Texture Global Block (0, 0) Shared Memory Local Thread (0, 0) Registers Thread (1, 0) Block (1, 0) Host © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign Courtesy: NDVIA

CUDA – API © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Highlights: Easy and Lightweight The API is an extension to the ANSI C programming language Low learning curve The hardware is designed to enable lightweight runtime and driver High performance © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

A Small Detour: A Matrix Data Type NOT part of CUDA It will be frequently used in many code examples 2 D matrix single precision float elements width * height elements pitch meaningful when the matrix is actually a sub-matrix of another matrix data elements allocated and attached to elements typedef struct { int width; int height; int pitch; float* elements; } Matrix; © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Device Memory Allocation cudaMalloc() Allocates object in the device Global Memory Requires two parameters Address of a pointer to the allocated object Size of of allocated object cudaFree() Frees object from device Global Memory Pointer to freed object (Device) Grid Constant Memory Texture Global Block (0, 0) Shared Memory Local Thread (0, 0) Registers Thread (1, 0) Block (1, 0) Host © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Device Memory Allocation (cont.) Code example: Allocate a 64 * 64 single precision float array Attach the allocated storage to Md.elements “d” is often used to indicate a device data structure BLOCK_SIZE = 64; Matrix Md int size = BLOCK_SIZE * BLOCK_SIZE * sizeof(float); cudaMalloc((void**)&Md.elements, size); cudaFree(Md.elements); © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Host-Device Data Transfer cudaMemcpy() memory data transfer Requires four parameters Pointer to source Pointer to destination Number of bytes copied Type of transfer Host to Host Host to Device Device to Host Device to Device Asynchronous in CUDA 1.0 (Device) Grid Constant Memory Texture Global Block (0, 0) Shared Memory Local Thread (0, 0) Registers Thread (1, 0) Block (1, 0) Host © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Host-Device Data Transfer (cont.) Code example: Transfer a 64 * 64 single precision float array M is in host memory and Md is in device memory cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are symbolic constants cudaMemcpy(Md.elements, M.elements, size, cudaMemcpyHostToDevice); cudaMemcpy(M.elements, Md.elements, size, cudaMemcpyDeviceToHost); © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Function Declarations Executed on the: Only callable from the: __device__ float DeviceFunc() device __global__ void KernelFunc() host __host__ float HostFunc() __global__ defines a kernel function Must return void __device__ and __host__ can be used together © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Function Declarations (cont.) __device__ functions cannot have their address taken For functions executed on the device: No recursion No static variable declarations inside the function No variable number of arguments © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Calling a Kernel Function – Thread Creation A kernel function must be called with an execution configuration: __global__ void KernelFunc(...); dim3 DimGrid(100, 50); // 5000 thread blocks dim3 DimBlock(4, 8, 8); // 256 threads per block size_t SharedMemBytes = 64; // 64 bytes of shared memory KernelFunc<<< DimGrid, DimBlock, SharedMemBytes >>>(...); Any call to a kernel function is asynchronous from CUDA 1.0 on, explicit synch needed for blocking © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

A Simple Running Example Matrix Multiplication A straightforward matrix multiplication example that illustrates the basic features of memory and thread management in CUDA programs Leave shared memory usage until later Local, register usage Thread ID usage Memory data transfer API between host and device © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Programming Model: Square Matrix Multiplication Example P = M * N of size WIDTH x WIDTH Without tiling: One thread handles one element of P M and N are loaded WIDTH times from global memory N WIDTH M P WIDTH © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign WIDTH WIDTH

Step 1: Matrix Data Transfers // Allocate the device memory where we will copy M to Matrix Md; Md.width = WIDTH; Md.height = WIDTH; Md.pitch = WIDTH; int size = WIDTH * WIDTH * sizeof(float); cudaMalloc((void**)&Md.elements, size); // Copy M from the host to the device cudaMemcpy(Md.elements, M.elements, size, cudaMemcpyHostToDevice); // Read M from the device to the host into P cudaMemcpy(P.elements, Md.elements, size, cudaMemcpyDeviceToHost); ... // Free device memory cudaFree(Md.elements); © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Step 2: Matrix Multiplication A Simple Host Code in C // Matrix multiplication on the (CPU) host in double precision // for simplicity, we will assume that all dimensions are equal void MatrixMulOnHost(const Matrix M, const Matrix N, Matrix P) { for (int i = 0; i < M.height; ++i) for (int j = 0; j < N.width; ++j) { double sum = 0; for (int k = 0; k < M.width; ++k) { double a = M.elements[i * M.width + k]; double b = N.elements[k * N.width + j]; sum += a * b; } P.elements[i * N.width + j] = sum; © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Multiply Using One Thread Block Grid 1 One Block of threads compute matrix P Each thread computes one element of P Each thread Loads a row of matrix M Loads a column of matrix N Perform one multiply and addition for each pair of M and N elements Compute to off-chip memory access ratio close to 1:1 (not very high) Size of matrix limited by the number of threads allowed in a thread block Block 1 Thread (2, 2) 48 BLOCK_SIZE M P © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Step 3: Matrix Multiplication Host-side Main Program Code int main(void) { // Allocate and initialize the matrices Matrix M = AllocateMatrix(WIDTH, WIDTH, 1); Matrix N = AllocateMatrix(WIDTH, WIDTH, 1); Matrix P = AllocateMatrix(WIDTH, WIDTH, 0); // M * N on the device MatrixMulOnDevice(M, N, P); // Free matrices FreeMatrix(M); FreeMatrix(N); FreeMatrix(P); return 0; } © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Step 3: Matrix Multiplication Host-side code // Matrix multiplication on the device void MatrixMulOnDevice(const Matrix M, const Matrix N, Matrix P) { // Load M and N to the device Matrix Md = AllocateDeviceMatrix(M); CopyToDeviceMatrix(Md, M); Matrix Nd = AllocateDeviceMatrix(N); CopyToDeviceMatrix(Nd, N); // Allocate P on the device Matrix Pd = AllocateDeviceMatrix(P); CopyToDeviceMatrix(Pd, P); // Clear memory © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Step 3: Matrix Multiplication Host-side Code (cont.) // Setup the execution configuration dim3 dimBlock(WIDTH, WIDTH); dim3 dimGrid(1, 1); // Launch the device computation threads! MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd); // Read P from the device CopyFromDeviceMatrix(P, Pd); // Free device matrices FreeDeviceMatrix(Md); FreeDeviceMatrix(Nd); FreeDeviceMatrix(Pd); } © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Step 4: Matrix Multiplication Device-side Kernel Function // Matrix multiplication kernel – thread specification __global__ void MatrixMulKernel(Matrix M, Matrix N, Matrix P) { // 2D Thread ID int tx = threadIdx.x; int ty = threadIdx.y; // Pvalue is used to store the element of the matrix // that is computed by the thread float Pvalue = 0; © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Step 4: Matrix Multiplication Device-Side Kernel Function (cont.) for (int k = 0; k < M.width; ++k) { float Melement = M.elements[ty * M.pitch + k]; float Nelement = Nd.elements[k * N.pitch + tx]; Pvalue += Melement * Nelement; } // Write the matrix to device memory; // each thread writes one element P.elements[ty * P.pitch + tx] = Pvalue; N WIDTH M P ty WIDTH tx © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign WIDTH WIDTH

Step 5: Some Loose Ends // Allocate a device matrix of same size as M. Matrix AllocateDeviceMatrix(const Matrix M) { Matrix Mdevice = M; int size = M.width * M.height * sizeof(float); cudaMalloc((void**)&Mdevice.elements, size); return Mdevice; } // Free a device matrix. void FreeDeviceMatrix(Matrix M) { cudaFree(M.elements); void FreeMatrix(Matrix M) { free(M.elements); © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Step 5: Some Loose Ends (cont.) // Copy a host matrix to a device matrix. void CopyToDeviceMatrix(Matrix Mdevice, const Matrix Mhost) { int size = Mhost.width * Mhost.height * sizeof(float); cudaMemcpy(Mdevice.elements, Mhost.elements, size, cudaMemcpyHostToDevice); } // Copy a device matrix to a host matrix. void CopyFromDeviceMatrix(Matrix Mhost, const Matrix Mdevice) int size = Mdevice.width * Mdevice.height * sizeof(float); cudaMemcpy(Mhost.elements, Mdevice.elements, size, cudaMemcpyDeviceToHost); © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Step 6: Handling Arbitrary Sized Square Matrices Have each 2D thread block to compute a (BLOCK_WIDTH)2 sub-matrix (tile) of the result matrix Each has (BLOCK_WIDTH)2 threads Generate a 2D Grid of (WIDTH/BLOCK_WIDTH)2 blocks N WIDTH P M You still need to put a loop around the kernel call for cases where WIDTH is greater than Max grid size! by ty WIDTH bx tx © David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign WIDTH WIDTH