Rankine Cycle Figures from Cengel and Boles, Thermodynamics, An Engineering Approach, 6th ed., McGraw Hill, 2008.

Slides:



Advertisements
Similar presentations
Use of Regeneration in Vapor Power Cycles
Advertisements

Second Law Analysis of Open Systems Isentropic Device Efficiency
Chapter 10 VAPOR AND COMBINED POWER CYCLES
Chapter 10 Vapor and Combined Power Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 6th edition by Yunus.
Reading: Cengel & Boles, Chapter 9
ENERGY CONVERSION ES 832a Eric Savory Lecture 12 – Large-scale plants Department of Mechanical and Material Engineering.
Example 1 - Superheat Rankine Cycle
1 Lec 24: Rankine cycle reheat, deviations, efficiency increases, viscosity, introduction to fluid flow.
Vapor and Combined Power Cycles
9 CHAPTER Vapor and Combined Power Cycles.
Power Generation OBJECTIVE To examine vapor power plants in which the working fluid is vaporized and condensed.
Department of Mechanical Engineering ME 322 – Mechanical Engineering Thermodynamics Lecture 25 Comparison to Carnot’s Heat Engine Effects of Boiling and.
Chapter 1 VAPOR AND COMBINED POWER CYCLES
Reheat cycle.
EXERCISE 1 CHAPTER 11.
Vapor Power Cycles Thermodynamics Professor Lee Carkner Lecture 19.
Vapor and Combined Power Cycles
Lec 23: Brayton cycle regeneration, Rankine cycle
A Vapor Power Cycle Boiler T Turbine Compressor (pump) Heat exchanger
Thermal_Power_Plant_2 Prepared by: NMG
Power Generation Cycles Vapor Power Generation The Rankine Cycle
Chem. Eng. Thermodynamics (TKK-2137) 14/15 Semester 3 Instructor: Rama Oktavian Office Hr.: M.13-15, Tu , W ,
Thermodynamics II Chapter 1 VAPOR POWER CYCLES
Vapor and Combined Power Cycles (2)
Unit 4 Exercise – Gas Vapour and Combined Power Cycle
Energy and the Environment Spring 2014 Instructor: Xiaodong Chu : Office Tel.: Mobile:
Lesson 8 SECOND LAW OF THERMODYNAMICS
A Vapor Power Cycle Boiler T Turbine Compressor (pump) Heat exchanger
STEAM TURBINE POWER CYCLES. The vast majority of electrical generating plants are variations of vapour power plants in which water is the working fluid.
Chapter 10 VAPOR AND COMBINED POWER CYCLES
Objectives -Discuss Final Project -
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
1 ChemE 260 Improvements and Non-Ideal Behavior in the Rankine Cycle May 20, 2005 Dr. William Baratuci Senior Lecturer Chemical Engineering Department.
Lecture Objectives: Finish with absorption cooling Power generation Rankine cycles Connect power generation with heating and cooling –CHP –CCHP.
Chapter 10 Vapor and Combined Power Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 7th edition by Yunus.
Chapter 11 Refrigeration Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 8th edition by Yunus A. Çengel.
The Rankine Cycle: An Alternate Ideal Thermodynamic Model P M V Subbarao Professor Mechanical Engineering Department IIT Delhi A Feasible Mathematical.
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
Branch : Electrical Group no. :. Roll no.Names 41)Shekh Azeem 42)Shiyal Jaydip 43)Shyara Khushbu 44)Mokariya Hiren 45)Sodha Bharatsingh 46)Solanki Piyush.
ENGR 2213 Thermodynamics F. C. Lai School of Aerospace and Mechanical Engineering University of Oklahoma.
T s boiler turbine pump work in work out heat out heat in condenser superheated vapor saturated liquid & vapor compressed liquid critical point.
Superheat Rankine Cycle Example Turbine pump condenser Q out Q in W out W in boiler Consider the superheat Rankine power cycle as we analyzed before.
Chapter 10 VAPOR AND COMBINED POWER CYCLES
Chapter 10 VAPOR AND COMBINED POWER CYCLES
Vapor ,Gas and Combined Power Cycles
Objectives Evaluate the performance of gas power cycles for which the working fluid remains a gas throughout the entire cycle. Analyze vapor power.
Chapter 11 REFRIGERATION CYCLES
VARIABLE EFFECTING EFFICIENCY OF RANKINE,REHEAT,REGENERATIVE CYCLE
Thermodynamics Cycles.
Lecture Objectives: Answer question related to Project 1 assignment
prepared by Laxmi institute tech. Mechanical eng. Department.
Chapter: 08 POWER CYCLES.
Simple Thermal Power Plant
TOPIC:- VAPOUR CYCLES CREATED BY:
RANKINE CYCLE IMPROVISATIONS BY PRABHAKARAN.T AP/MECH
Power and Refrigeration Systems
VAPOR & COMBINED POWER CYCLES
Power Plant Technology Steam and Gas Cycle Power Plant (Assignment 1)
UNIT IV- Vapour Power Cycles
Power Plant Technology Steam and Gas Cycle Power Plant (Assignment 2)
Photo Courtesy of GPU International
Chapter 8 Production of Power from Heat.
9 CHAPTER Vapor and Combined Power Cycles.
Objectives Discuss HW5 – Plumbing Finalize valve design
Real Rankine Cycle with Superheat
Chapter 11 Refrigeration Cycles Study Guide in PowerPoint to accompany Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel.
Lecture Objectives: Finish with Sorption cooling
Cogen, Regen Combined Cycle
Presentation transcript:

Rankine Cycle Figures from Cengel and Boles, Thermodynamics, An Engineering Approach, 6th ed., McGraw Hill, 2008.

First Law of Thermodynamics Review

Vapor Power Cycles In these types of cycles, a fluid evaporates and condenses. Ideal cycle is the Carnot Which processes here would cause problems?

Ideal Rankine Cycle This cycle follows the idea of the Carnot cycle but can be practically implemented. 1-2 isentropic pump 2-3 constant pressure heat addition 3-4 isentropic turbine 4-1 constant pressure heat rejection

Ideal Cycle Analysis h1=hf@ low pressure (saturated liquid) Wpump (ideal)=h2-h1=vf(Phigh-Plow) vf=specific volume of saturated liquid at low pressure Qin=h3-h2 heat added in boiler (positive value) Rate of heat transfer = Q*mass flow rate Usually either Qin will be specified or else the high temperature and pressure (so you can find h3)

Ideal Cycle Analysis, cont. Qout=h4-h1 heat removed from condenser (here h4 and h1 signs have been switched to keep this a positive value) Wturbine=h3-h4 turbine work Power = work * mass flow rate h4@ low pressure and s4=s3

Example 1– Ideal Rankine Cycle An ideal Rankine cycle operates between pressures of 30 kPa and 6 MPa. The temperature of the steam at the inlet of the turbine is 550°C. Find the net work for the cycle and the thermal efficiency. Wnet=Wturbine-Wpump OR Qin-Qout Thermal efficiency hth=Wnet/Qin

Deviations from Ideal in Real Cycles Pump is not ideal Turbine is not ideal There will be a pressure drop across the boiler and condenser Subcool the liquid in the condenser to prevent cavitation in the pump. For example, if you subcool it 5°C, that means that the temperauture entering the pump is 5°C below the saturation temperature.

Cavitation Photos Munson, Young, Okiishi, Fundamentals of Fluid Mechanics, 3rd ed., John Wiley and Sons, 1998.

Example 2 Repeat the last problem but with an isentropic pump efficiency of 75% and turbine efficiency of 85%.

T-s Diagrams Draw a T-s diagram for an ideal Rankine Cycle. Now show how that diagram will change if you keep the pressures the same but increase the superheating. What happens to Pump work input? Turbine work output? Heat rejected? Moisture content at turbine exit?

T-s Diagrams Draw a T-s diagram for an ideal Rankine Cycle. Now show how that diagram will change if you bix the turbine inlet temperature and condenser pressure but increase the boiler pressure. What happens to Pump work input? Heat rejected? Moisture content at exit of turbine?

To increase system efficiency Lower condenser pressure Must have at least 10°C DT between condenser and cooling water or air temperature for effective heat transfer Watch quality at exit to prevent turbine problems (shouldn’t go less than about 88%) Superheat the steam more Tmax ~ 620° due to metallurgical considerations Increase boiler pressure (with same Tmax) Pmax ~ 30 MPa Watch quality at exit

Reheat Cycle Allows us to increase boiler pressure without problems of low quality at turbine exit

Regeneration Preheats steam entering boiler using a feedwater heater, improving efficiency Also deaerates the fluid and reduces large volume flow rates at turbine exit.

A more complicated cycle…

Combined Cycle