Galactic Astronomy 銀河物理学特論 I Lecture 3-4: Chemical evolution of galaxies Seminar: Erb et al. 2006, ApJ, 644, 813 Lecture: 2012/01/23.

Slides:



Advertisements
Similar presentations
Neutral Gas Reservoirs from z=0 to z ~ 5 Neutral Gas Reservoirs from z=0 to z ~ 5 Art Wolfe Marc Rafelski: UCSD Marcel Neeleman: UCSD Michele Fumagali:
Advertisements

Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S.
The BPT diagram and mass-metallicity relation at z~2.3: Insights from KBSS-MOSFIRE Steidel et al. (2014) - Strong nebular line ratios in the spectra of.
The Physics of Supernovae
Metals at Highish Redshift And Large Scale Structures From DLAs to Underdense Regions Patrick Petitjean Institut d’Astrophysique de Paris B. Aracil R.
T.P. Idiart  and J.A. de Freitas Pacheco   Universidade de São Paulo (Brasil)  Observatoire de la Côte d’Azur (France) Introduction Elliptical galaxies.
Current work on AO NACO archive data on deep fields: SR across the field limit mag. morphology NICMOS VLT-NACO ghosts.
Chemical Models of Protoplanetary Disks for Extrasolar Planetary Systems J. C. Bond and D. S. Lauretta, Lunar and Planetary Laboratory, University of Arizona.
Edo Berger Carnegie Observatories Edo Berger Carnegie Observatories Probing Stellar to Galactic Scales with Gamma-Ray Bursts.
Center for Stellar and Planetary Astrophysics Monash University Summary prepared by John Lattanzio Abundances in M71.
“Damped Lyman Alpha Systems” by Wolfe, Arthur M., Gawiser, E. and Prochaska, Jason X. Jean P. Walker Rutgers University Galaxy Formation Seminar.
Advanced Methods for Studying Astronomical Populations: Inferring Distributions and Evolution of Derived (not Measured!) Quantities Brandon C. Kelly (CfA,
Exploring the orbits of the stars from a blind chemical tagging experiment Borja Anguiano Macquarie University, Sydney, Australia.
The Schrödinger Model and the Periodic Table. Elementnℓms H He Li Be B C N O F Ne.
The Host Galaxies of High-Redshift GRBs Edo Berger Harvard University.
Supernovae, Nucleosynthesis, and Constraints on Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago and.
Lecture 10 Metalicity Evolution Simple models for Z(  ( t ) ) (Closed Box, Accreting Box, Leaky Box) Z = - y ln(  ) = y ln( 1 /  ) “G dwarf problem”
A Unified Representation of Gas- Phase Element Depletions in the Interstellar Medium A Consolidation of Findings from 30 Years of Investigation of Ultraviolet.
1 GRB, SN and identification of the hosts GRB, SN and identification of the hosts Valentina Grieco by means of evolution models chemical Trieste, 28 nov.
化学組成に刻まれた Ia 型超新星の多様 性 辻本拓司 ( 国立天文台 )  chemical imprint on stars of supernova nucleosynthesis in general, the issue about Type II supernovae  prompt.
Presolar grains and AGB stars Maria Lugaro Sterrenkundig Instituut University of Utrecht.
Galactic Helium-to-Metals enrichment ratio from the analysis of local main sequence stars observed by HIPPARCOS 52° Congresso SAIt – Teramo 2008 * Università.
Gamma-ray Burst Afterglow Spectroscopy J. P. U. Fynbo, Niels Bohr Institute / Dark Cosmology Centre.
Galactic Astronomy 銀河物理学特論 I Lecture 1-5: Dependence of Galaxy Properties on Environment Seminar: Park et al. 2007, ApJ, 658, 898 Lecture: 2011/11/07.
1 / 17 The Elemental Abundance Distributions of Milky Way Satellite Galaxies Evan Kirby (HF09) Caltech Small Magellanic Cloud, HST/ACS credit: NASA, ESA,
Gamma-Ray Bursts observed by XMM-Newton Paul O’Brien X-ray and Observational Astronomy Group, University of Leicester Collaborators:- James Reeves, Darach.
Galactic Astronomy 銀河物理学特論 I Lecture 2-1: Active galaxies and super massive black holes in the local universe Seminar: Gultekin et al. 2009, ApJ, 698,
Marta Gavilán Bouzas Mercedes Mollá Lorente Estallidos IV, Granada
Galactic Astronomy 銀河物理学特論 I Lecture 3-1: Statistical survey of high-redshift galaxies Seminar: Steidel et al. 1999, ApJ, 519, 1 Lecture: 2011/11/28.
Galactic structure and star counts Du cuihua BATC meeting, NAOC.
Galactic Archaeology wishy-washy Nobuo Arimoto NAOJ.
Galactic Evolution Workshop NAOJ Sachie Arao, Yuhri Ishimaru (ICU) Shinya Wanajo(Riken) Nucleosynthesis of Elements heavier than Fe through.
Model Chemical Evolution: Starburst Environment. Once upon a time… Somewhat big bang started it all. Radiation domination Matter domination Matter gets.
BBN abundance observations Karl Young and Taryn Heilman Astronomy 5022 December 4, 2014.
Galactic Astronomy 銀河物理学特論 I Lecture 3-2: Evolution of Luminosity Functions of Galaxies Seminar: Lily et al. 1995, ApJ, 455, 108 Lecture: 2011/12/12.
Dust-Obscured Gamma-Ray Bursts and the Cosmic Star-Formation Rate Daniel A. Perley (Caltech) A significant minority of GRBs are heavily obscured 4, 5,
A comprehensible trace of formation and chemical enrichment of a given stellar system involves the built of several chemical diagrams describing the evolution.
Low-Metallicity DLAs. The Development of the “Cosmic Web” - the First Galaxies! Observing the High - z universe and metal enrichment - QSO and GRB lines.
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
Netherlands Organisation for Scientific Research Probing interstellar dust through X-ray spectroscopy C. Pinto *, J. S. Kaastra * †, E. Costantini *, F.
Netherlands Organisation for Scientific Research High-resolution X-ray spectroscopy of the chemical and physical structure of the Interstellar Medium C.
Galactic Astronomy 銀河物理学特論 I Lecture 3-5: Evolution of dynamical structure of galaxies Seminar: Forster Schreiber et al. 2009, ApJ, 706, 1364 Lecture:
Thick disks in galaxies External galaxies: NGC 4565, van der Kruit and Searle 1981 Milky Way: Gilmore and Reid 1983.
Metallicity in intra-cluster medium of clusters and groups of galaxies
Dust-Obscured Gamma-Ray Bursts and the Cosmic Star-Formation Rate
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
Ciro Pinto(1) J. S. Kaastra(1,2), E. Costantini(1), F. Verbunt(1,2)
The roles of Type Ia SN rates in galactic chemical evolution
First Stars and GRBs, and their Cosmological Impacts
Metal Loss from Dwarf Galaxies
Long GRB rate in the binary merger model
“Dark” GRB in a Dusty Massive Galaxy at z ~ 2
X-Rays -> see you at COSPAR in July; also Kawai’s talk this conf.
The “Milky Way”.
Origin and Nature of Dust Grains in the Early Universe
Tohru Nagao Observational Study on
Delay time distribution of type Ia supernovae
Lecture 11: Age and Metalicity from Observations
Speaker: Longbiao Li Collaborators: Yongfeng Huang, Zhibin Zhang,
Y. Katsuta1), T. Suda1,2), S. Yamada1), N. Nishimura3),
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Center for Computational Physics
Nucleosynthesis in jets from Collapsars
Lecture 4: Light extinction: Compton scattering Gamma-Ray Bursts.
Authod: Ryan L. Sanders et al.(2018)
Type Ia and II supernovae contributions
Galactic Astronomy 銀河物理学特論 I Lecture 3-3: Stellar mass function of galaxies Seminar: Perez-Gonzalez et al. 2008, ApJ, 675, 234 Lecture: 2012/01/16.
Table 1. Chemical Composition of Base Aluminium Alloys
Presentation transcript:

Galactic Astronomy 銀河物理学特論 I Lecture 3-4: Chemical evolution of galaxies Seminar: Erb et al. 2006, ApJ, 644, 813 Lecture: 2012/01/23

Gas consumption and rise of metallicities of galaxies: Erb. 2008, ApJ, 674, 151

Mass-metallicity relation of z~3 LBGs: Metallicity estimation with using various lines in parallel. Maiolino et al. 2008, A&A,488, 463

Mass-metallicity relation of z~3 LBGs: Redshift evolution of the mass-metallicity relation of galaxies. At higher redshifts, the measured metallicity is lower for the galaxies with same stellar mass. At higher redshift, the relation is derived only using blue star-forming galaxies… Maiolino et al. 2008, A&A, 488, 463

FMOS observation of Mass-metallicity relation of z~1.4 galaxies: Determination of the “intrinsic” scatter of the mass-metallicity relation, and examination of the “2ry” parameter. Maiolino et al. 2008, A&A, 488, 463 Yabe et al. arXiv1112.3704

FMOS observation of Mass-metallicity relation of z~1.4 galaxies: Determination of the “intrinsic” scatter of the mass-metallicity relation, and examination of the “2ry” parameter which determines the “intrinsic” scatter of the relation. Yabe et al. arXiv1112.3704

FMOS observation of Mass-metallicity relation of z~1.4 galaxies: Determination of the “intrinsic” scatter of the mass-metallicity relation, and examination of the “2ry” parameter which determines the “intrinsic” scatter of the relation. Yabe et al. arXiv1112.3704

FMOS observation of Mass-metallicity relation of z~1.4 galaxies: Determination of the “intrinsic” scatter of the mass-metallicity relation, and examination of the “2ry” parameter which determines the “intrinsic” scatter of the relation. Maiolino et al. 2008, A&A, 488, 463 Yabe et al. arXiv1112.3704

2ry parameter of Mass-metallicity relation ?: Specific SFR (SFR/Mstar) is proposed as a 2ry parameter of the mass-metallicity relation. Mannucci et al. 2010, MNRAS, 408, 2115

Metallicity of other systems: Metallicity from IS absorption lines: Metallicity determination of gas component using Inter Stellar absorption lines. Savaglio et al. 2004, ApJ, 602, 51

Metallicity of other systems: Metal abundances of damped-Lya galaxies: Metallicity of Damped Lya system determined with metallic absorption lines. Z=2.8110 system Fe, Si, Zn, Ni, S, Mg, Cr, C, N, O Z=4.0803 system Fe, C, Si, Al, Ni Z=0.8598 system Fe, Mn, Zn, Cr, Mg Lu et al. 1996, ApJS, 107, 475

Metallicity of other systems: Metal abundances of damped-Lya galaxies: Fe/H is smaller compared with the galactic disk stars formed at that redshift. Abundance ratio is similar to halo stars in the Galaxy, which suggests contribution from Type-II Sne is large, contribution from Type-Ia SNe is small. ? Lu et al. 1996, ApJS, 107, 475

Metal abundances of Gamma-ray Burst Absorption systems: GRB に見られた DLA に付随する金属吸収線を用いてそれぞれの金属の組成量を推定する。 Prochaska et al. 2007, ApJ, 666, 267