Rapid in situ chondrocyte death induced by Staphylococcus aureus toxins in a bovine cartilage explant model of septic arthritis  I.D.M. Smith, J.P. Winstanley,

Slides:



Advertisements
Similar presentations
Chondro-protective effects of low intensity pulsed ultrasound
Advertisements

Validity and responsiveness of a new measure of knee osteophytes for osteoarthritis studies: data from the osteoarthritis initiative  M. Hakky, M. Jarraya,
Insulin-like growth factor-1 boosts the developing process of condylar hyperplasia by stimulating chondrocytes proliferation  Y. Chen, J. Ke, X. Long,
Interleukin-1 inhibits osmotically induced calcium signaling and volume regulation in articular chondrocytes  S. Pritchard, Ph.D., B.J. Votta, M.S., S.
Cutting-edge design to improve cell viability in osteochondral grafts
D.A. Houston, A.K. Amin, T.O. White, I.D.M. Smith, A.C. Hall 
2D and 3D MOCART scoring systems assessed by 9
M. Z. Ilic, Ph. D. , B. Martinac, Ph. D. , T. Samiric, Ph. D. , C. J
Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess.
T. Maerz, M. D. Newton, K. Kristof, O. Motovylyak, J. S. Fischgrund, D
Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs  T.-A.N. Kelly, Ph.D., K.W.
B. Mohanraj, G.R. Meloni, R.L. Mauck, G.R. Dodge 
Bone turnover and articular cartilage differences localized to subchondral cysts in knees with advanced osteoarthritis  Y. Chen, T. Wang, M. Guan, W.
Fibroblast growth factor-2 induced chondrocyte cluster formation in experimentally wounded articular cartilage is blocked by soluble Jagged-1  I.M. Khan,
The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels  N.
Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage  Peggy M.
Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis  H. Mitsuyama, M.D., Ph.D., R.M. Healey, B.S.,
A.J. McGregor, B.G. Amsden, S.D. Waldman  Osteoarthritis and Cartilage 
The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage  P.G Bush, Ph.D., A.C Hall, Ph.D.  Osteoarthritis.
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
Differential response of porcine osteoblasts and chondrocytes in cell or tissue culture after 5-aminolevulinic acid-based photodynamic therapy  J.D. Bastian,
M. E. R. van Meegeren, G. Roosendaal, N. W. D. Jansen, M. J. G
X. Zhu, Y. Tang, J. Chen, S. Xiong, S. Zhuo, J. Chen 
Injury of primary afferent neurons may contribute to osteoarthritis induced pain: an experimental study using the collagenase model in rats  S. Adães,
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering.
J.A. Collins, R.J. Moots, R. Winstanley, P.D. Clegg, P.I. Milner 
Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. This effect is mimicked.
Enrichment of committed human nucleus pulposus cells expressing chondroitin sulfate proteoglycans under alginate encapsulation  Y. Sun, M. Lv, L. Zhou,
B. H. He, M. Christin, S. Mouchbahani-Constance, A. Davidova, R
Bone marrow stimulation induces greater chondrogenesis in trochlear vs condylar cartilage defects in skeletally mature rabbits  H. Chen, A. Chevrier,
Oxidative stress induces expression of osteoarthritis markers procollagen IIA and 3B3(−) in adult bovine articular cartilage  I.M. Khan, Ph.D., S.J. Gilbert,
The anti-NGF antibody muMab 911 both prevents and reverses pain behaviour and subchondral osteoclast numbers in a rat model of osteoarthritis pain  L.
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
Viability and volume of in situ bovine articular chondrocytes—changes following a single impact and effects of medium osmolarity  Dr Peter G. Bush, Ph.D.,
Effects of insulin-like growth factor-1 and dexamethasone on cytokine-challenged cartilage: relevance to post-traumatic osteoarthritis  Y. Li, Y. Wang,
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
PCB126 induces apoptosis of chondrocytes via ROS-dependent pathways
Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit  H.J. Pulkkinen, V. Tiitu, P. Valonen,
Y. Zhou, L. Resutek, L. Wang, X. Lu  Osteoarthritis and Cartilage 
Primary cilia disassembly down-regulates mechanosensitive hedgehog signalling: a feedback mechanism controlling ADAMTS-5 expression in chondrocytes  C.L.
Dr J. Deschner, D. M. D. , Ph. D. , Dr B. Rath-Deschner, D. M. D. , Ph
J. Ranstam  Osteoarthritis and Cartilage 
Quantitative regional and sub-regional analysis of femoral and tibial subchondral bone mineral density (sBMD) using computed tomography (CT): comparison.
L. C. Davies, B. Sc. , Ph. D. , E. J. Blain, B. Sc. , Ph. D. , B
Bisphosphonate rescues cartilage from trauma damage by promoting mechanical sensitivity and calcium signaling in chondrocytes  Y. Zhou, M. Park, L. Wang,
Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,
In vitro toxicity in long-term cell culture of MR contrast agents targeted to cartilage evaluation  S. Midura, E. Schneider, F.A. Sakamoto, G.M. Rosen,
The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes  Z. Wang, J. Irianto,
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
N. Männicke, M. Schöne, M. Oelze, K. Raum  Osteoarthritis and Cartilage 
S.I. Paterson, A.K. Amin, A.C. Hall  Osteoarthritis and Cartilage 
Chondrocyte mechanotransduction: effects of compression on deformation of intracellular organelles and relevance to cellular biosynthesis  Jon D. Szafranski,
J. A. Martin, A. Martini, A. Molinari, W. Morgan, W. Ramalingam, J. A
Noninvasive dualMRI-based strains vary by depth and region in human osteoarthritic articular cartilage  A.J. Griebel, S.B. Trippel, C.P. Neu  Osteoarthritis.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
Dynamic compression counteracts IL-1β-induced release of nitric oxide and PGE2by superficial zone chondrocytes cultured in agarose constructs  T.T Chowdhury,
Effect of a glucosamine derivative on impact-induced chondrocyte apoptosis in vitro. A preliminary report  C.A.M. Huser, Ph.D., M.E. Davies, Ph.D.  Osteoarthritis.
Mechanical injury of bovine cartilage explants induces depth-dependent, transient changes in MAP kinase activity associated with apoptosis  D.H. Rosenzweig,
Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and type 2 diabetes mellitus  C.Y. Wen, Y. Chen, H.L. Tang, C.H. Yan,
PTHrP overexpression partially inhibits a mechanical strain-induced arthritic phenotype in chondrocytes  D. Wang, J.M. Taboas, R.S. Tuan  Osteoarthritis.
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
Estrogen reduces mechanical injury-related cell death and proteoglycan degradation in mature articular cartilage independent of the presence of the superficial.
Alterations to the subchondral bone architecture during osteoarthritis: bone adaptation vs endochondral bone formation  L.G.E. Cox, C.C. van Donkelaar,
Enhanced phagocytic capacity endows chondrogenic progenitor cells with a novel scavenger function within injured cartilage  C. Zhou, H. Zheng, J.A. Buckwalter,
Cartilage repair of the ankle: first results of T2 mapping at 7
Chondro-protective effects of low intensity pulsed ultrasound
M. Doherty, P. Dieppe  Osteoarthritis and Cartilage 
Presentation transcript:

Rapid in situ chondrocyte death induced by Staphylococcus aureus toxins in a bovine cartilage explant model of septic arthritis  I.D.M. Smith, J.P. Winstanley, K.M. Milto, C.J. Doherty, E. Czarniak, S.G.B. Amyes, A.H.R.W. Simpson, A.C. Hall  Osteoarthritis and Cartilage  Volume 21, Issue 11, Pages 1755-1765 (November 2013) DOI: 10.1016/j.joca.2013.07.013 Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 The preparation of osteochondral explants for axial and coronal CLSM imaging (A). Axial and coronal regions of interest (areas within broken yellow boxes) were established and live/dead cell counts performed within these regions by thresholding voxel intensity (see Materials and methods) (B). Living and dead cells were marked blue and yellow, respectively, following identification. A 50% field-of-view region of interest was utilised for all axial images in order to safely avoid the dead-cell artifact produced by the cut-edge (*) (white bar = 100 μm). Osteoarthritis and Cartilage 2013 21, 1755-1765DOI: (10.1016/j.joca.2013.07.013) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Increased in situ chondrocyte death by S. aureus 8325-4. Line graph (A) shows chondrocyte death in the presence or absence (DMEM control group) of S. aureus 8325-4 (N = 4[n = 8]; P values represent 8325-4 vs DMEM control group by unpaired Student's two-tailed t test). The CLSM images (B) display the marked difference between the S. aureus 8325-4 and DMEM control groups at 40 h (white bar = 100 μm). Values are means ± 95% CI. Osteoarthritis and Cartilage 2013 21, 1755-1765DOI: (10.1016/j.joca.2013.07.013) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Acidic culture medium induces a small decrease in in situ chondrocyte viability. Reduced culture medium pH was noted during 40 h S. aureus 8325-4 culture, as depicted by a change in culture medium colour (DMEM contains phenol red which is pH sensitive and progresses through orange to yellow as the immediate environment becomes more acidic) (A). The bar graph (B) demonstrates in situ chondrocyte viability, in the absence of bacteria, in pH7.4 (control), 6.4 and 5.4 culture medium (N = 6[n = 6]; numerical P values represent one-way between-groups Kruskal–Wallis ANOVA; **P < 0.01 pH5.4 vs pH6.4 by post hoc Dunn's test). Values are means ± 95% CI. Osteoarthritis and Cartilage 2013 21, 1755-1765DOI: (10.1016/j.joca.2013.07.013) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 S. aureus clinical isolates have a damaging effect on in situ chondrocyte viability. The bar graph (A) displays a significant difference between the DMEM control group and the clinical isolates from 18 h onwards (N = 4[n = 8]; numerical P values represent one-way between-groups ANOVA; ***P < 0.001 vs DMEM control group by post hoc Dunnett's test). The panels (B) show CLSM images of explants exposed to the clinical isolates with marked chondrocyte death induced by all isolates at 40 h in comparison to the DMEM control group. However, the potencies of the isolates vary at 18 and 24 h (white bar = 100 μm). Values are means ± 95% CI. Osteoarthritis and Cartilage 2013 21, 1755-1765DOI: (10.1016/j.joca.2013.07.013) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 The zonal pattern of chondrocyte death following exposure to S. aureus 8325-4. In the absence of bacteria (A), chondrocyte death at each time point was minimal and consistent within each depth interval. Apart from 18 h, there was significantly increased chondrocyte death within the first 100 μm in comparison to deeper zones (N = 4[n = 8]; numerical P values represent one-way between-groups ANOVA; *P < 0.05; **P < 0.01; ***P < 0.001 vs 0–100 μm depth interval by post hoc Bonferroni test). In those explants exposed to S. aureus 8325-4 (B), chondrocyte death commenced within the SZ and extended to deeper layers (N = 4[n = 8]; P < 0.05 vs comparable depth interval in DMEM control group by Mann–Whitney U test). The panels (C) display CLSM images of explants cultured in either the presence or absence of S. aureus 8325-4 and provide a visual representation of chondrocyte death commencing within the SZ and progressing (white arrows) to deeper layers (white bar = 100 μm). Values are means ± 95% CI. Osteoarthritis and Cartilage 2013 21, 1755-1765DOI: (10.1016/j.joca.2013.07.013) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 No change in cartilage water content following 40 h culture in the presence of S. aureus 8325-4 and pH5.4 culture medium (N = 4[n = 8]; numerical P values represent one-way between-groups ANOVA). Values are means ± 95% CI. Osteoarthritis and Cartilage 2013 21, 1755-1765DOI: (10.1016/j.joca.2013.07.013) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Increased susceptibility of SZ chondrocytes to S. aureus 8325-4 toxins. Subchondral bone-free explants (A) were exposed to S. aureus 8325-4 toxins for 6 h and chondrocyte viability was assessed within defined regions of interest (dashed yellow boxes). The bar chart (B) demonstrates no difference in chondrocyte viability between the SZ and DZ at 0 h (N = 4[n = 8]; P = 0.36 by unpaired Student's two-tailed t test). However, at 6 h there was significantly more chondrocyte death within the SZ in comparison to the DZ (P < 0.001). The CLSM reconstructions (C) provide a clear visual representation of the increased susceptibility of SZ chondrocytes to S. aureus 8325-4 toxins (white bar = 100 μm). Values are means ± 95% CI. Osteoarthritis and Cartilage 2013 21, 1755-1765DOI: (10.1016/j.joca.2013.07.013) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions