Olaf Blanke, Mel Slater, Andrea Serino  Neuron 

Slides:



Advertisements
Similar presentations
Decision Making as a Window on Cognition Michael N. Shadlen, Roozbeh Kiani Neuron Volume 80, Issue 3, Pages (October 2013) DOI: /j.neuron
Advertisements

Building Better Models of Visual Cortical Receptive Fields
Bram-Ernst Verhoef, Rufin Vogels, Peter Janssen  Neuron 
Davide Nardo, Valerio Santangelo, Emiliano Macaluso  Neuron 
Volume 60, Issue 4, Pages (November 2008)
The Cortical Control of Movement Revisited
A Source for Feature-Based Attention in the Prefrontal Cortex
Volume 77, Issue 5, Pages (March 2013)
Representation of Natural Stimuli in the Rodent Main Olfactory Bulb
Bram-Ernst Verhoef, Rufin Vogels, Peter Janssen  Neuron 
Crossmodal Spatial Influences of Touch on Extrastriate Visual Areas Take Current Gaze Direction into Account  E Macaluso, C.D Frith, J Driver  Neuron 
Araceli Ramirez-Cardenas, Maria Moskaleva, Andreas Nieder 
Finding Gamma Neuron Volume 58, Issue 3, Pages (May 2008)
Volume 70, Issue 2, Pages (April 2011)
Natalia Zaretskaya, Andreas Bartels  Current Biology 
Aaron R. Seitz, Praveen K. Pilly, Christopher C. Pack  Current Biology 
Volume 58, Issue 4, Pages (May 2008)
Asif A. Ghazanfar, Chandramouli F. Chandrasekaran  Neuron 
Frontal Cortex and the Discovery of Abstract Action Rules
Complex Movements Evoked by Microstimulation of Precentral Cortex
Task-Guided Selection of the Dual Neural Pathways for Reading
Sing-Hang Cheung, Fang Fang, Sheng He, Gordon E. Legge  Current Biology 
A Code for Cross-Modal Working Memory
A Neural Signature of Divisive Normalization at the Level of Multisensory Integration in Primate Cortex  Tomokazu Ohshiro, Dora E. Angelaki, Gregory C.
Attention-Induced Variance and Noise Correlation Reduction in Macaque V1 Is Mediated by NMDA Receptors  Jose L. Herrero, Marc A. Gieselmann, Mehdi Sanayei,
Mapping Behavioral Repertoire onto the Cortex
Michael L. Morgan, Gregory C. DeAngelis, Dora E. Angelaki  Neuron 
Emotional Pain without Sensory Pain—Dream On?
Huntington's Disease: Can Mice Lead the Way to Treatment?
The Body Model Theory of Somatosensory Cortex
Hongbo Yu, Brandon J. Farley, Dezhe Z. Jin, Mriganka Sur  Neuron 
Volume 70, Issue 2, Pages (April 2011)
CA3 Retrieves Coherent Representations from Degraded Input: Direct Evidence for CA3 Pattern Completion and Dentate Gyrus Pattern Separation  Joshua P.
A Role for the Superior Colliculus in Decision Criteria
Syed A. Chowdhury, Gregory C. DeAngelis  Neuron 
Volume 95, Issue 1, Pages e3 (July 2017)
Volume 65, Issue 6, Pages (March 2010)
Talia Konkle, Aude Oliva  Neuron  Volume 74, Issue 6, Pages (June 2012)
Volume 76, Issue 2, Pages (October 2012)
Integration of Touch and Sound in Auditory Cortex
Volume 25, Issue 11, Pages (June 2015)
Volume 45, Issue 4, Pages (February 2005)
Patrick Haggard, Gian Domenico Iannetti, Matthew R. Longo 
Feature-based attention in visual cortex
Neurological and Robot-Controlled Induction of an Apparition
Sharon C. Furtak, Omar J. Ahmed, Rebecca D. Burwell  Neuron 
Georgia G. Gregoriou, Stephen J. Gotts, Robert Desimone  Neuron 
Watching the Fly Brain Learn
Volume 94, Issue 5, Pages (June 2017)
Value-Based Modulations in Human Visual Cortex
Volume 59, Issue 5, Pages (September 2008)
Local and Global Contrast Adaptation in Retinal Ganglion Cells
Volume 75, Issue 5, Pages (September 2012)
The Normalization Model of Attention
Jennifer K. Bizley, Ross K. Maddox, Adrian K.C. Lee 
Mark J. Buckley, Natasha Sigala  Neuron 
Vahe Poghosyan, Andreas A. Ioannides  Neuron 
Short-Term Memory for Figure-Ground Organization in the Visual Cortex
Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations  Martin A. Giese, Giacomo Rizzolatti  Neuron 
Jude F. Mitchell, Kristy A. Sundberg, John H. Reynolds  Neuron 
MT Neurons Combine Visual Motion with a Smooth Eye Movement Signal to Code Depth-Sign from Motion Parallax  Jacob W. Nadler, Mark Nawrot, Dora E. Angelaki,
John T. Serences, Geoffrey M. Boynton  Neuron 
Paying Attention to the Details of Attention
Cell Assemblies of the Superficial Cortex
Neuronal Mechanisms for Illusory Brightness Perception in Humans
Kristy A. Sundberg, Jude F. Mitchell, John H. Reynolds  Neuron 
Caroline A. Montojo, Susan M. Courtney  Neuron 
Supratim Ray, John H.R. Maunsell  Neuron 
Nicolas Unsain, Philip A. Barker  Neuron 
Gwendolyn G. Calhoon, Patricio O’Donnell  Neuron 
Presentation transcript:

Behavioral, Neural, and Computational Principles of Bodily Self-Consciousness  Olaf Blanke, Mel Slater, Andrea Serino  Neuron  Volume 88, Issue 1, Pages 145-166 (October 2015) DOI: 10.1016/j.neuron.2015.09.029 Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 1 Four BSC Constraints Determining Hand Ownership (A—E) Stimuli applied to an artificial hand (blue hand) are integrated with stimuli on the physical hand, if the artificial hand is placed coherently with the posture of the physical hand, whereas no change in hand BSC (i.e., illusory hand ownership) occurs if it is placed in an non-matching body posture ([A], proprioceptive constraint). No change in hand BSC occurs for an object with a non-bodily shape ([B], body-related visual information constraint) or if the artificial hand is presented outside the PPS of the real hand ([C], PPS constraint). A change in hand BSC is obtained if the real hand and the artificial hand receive synchronous and prolonged visuo-tactile stimulation ([D], embodiment constraint). Note that, normally, these four constraints apply to the parts of one’s own physical body, leading to the normal sense of body ownership (E). Red and green body of the participant indicates, respectively, absence or presence of BSC for the hand. Neuron 2015 88, 145-166DOI: (10.1016/j.neuron.2015.09.029) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 2 Four Constraints Determining Global Aspects of BSC (i.e., Self-Identification and Self-Location) (A and B) Stimuli applied to an artificial body (with blue shirt) are integrated with stimuli on one’s physical body (with red or green shirt), if the artificial body is placed coherently with the posture of the physical body. This change in global BSC does not occur if proprioceptive (and vestibular) information from one’s own and the artificial body does not match ([A], proprioceptive constraint), or if an object with non-bodily shape is shown ([B], body-related visual information constraint). (C—E) Prolonged synchronous visuo-tactile stimulation applied to one’s physical body and to the artificial body induces changes in global BSC, extends one’s own PPS ([C], PPS constraint), and induces self-identification for, and a shift of self-location toward, the artificial body ([D], embodiment constraint). These four constraints normally determine integration of multisensory body signals for one’s whole body, thus underlying self-identification with the body and normal self-location at the location of the physical body, within the PPS (E). Red and green body of the participant indicates, respectively, absence or presence of global aspects of BSC. Neuron 2015 88, 145-166DOI: (10.1016/j.neuron.2015.09.029) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 3 Neurophysiological Mechanisms of BSC in the Macaque (A–C) Upper panel: main brain regions, dimensions, and location of multisensory receptive fields of multimodal neurons integrating body-related multisensory inputs within the PPS in the macaque ([A], PPS constraint). Lower panel: multisensory neurons may respond to stimulation related to an artificial arm, but this effect depends on whether the artificial hand is placed coherently or not with the posture of the physical hand ([B], proprioceptive constraint) and on whether an visual stimulus with bodily or non-bodily shape is shown ([C], body-related visual information constraint). (D and E) Some multisensory neurons originally respond only to stimuli related to the real arm (D) and not to an artificial arm; however, prolonged synchronous visuo-tactile of the real and the artificial arm makes these neurons responding also to the artificial arm ([E], embodiment constraint). Neuron 2015 88, 145-166DOI: (10.1016/j.neuron.2015.09.029) Copyright © 2015 Elsevier Inc. Terms and Conditions

Figure 4 Brain Regions Integrating Multisensory Bodily Inputs and Implied in BSC in the Human Brain (A) Brain areas selectively responding to multisensory inputs within the PPS around the hand (red), face (blue) or trunk (green). (B) Brain areas active during manipulations of BSC, underlying ownership for the hand (red) or face (blue), self-identification (green), or self-location (yellow). Each dot represents an activation site as identified by the studies reviewed in section 4. The colored shadows highlight clusters of activations. Neuron 2015 88, 145-166DOI: (10.1016/j.neuron.2015.09.029) Copyright © 2015 Elsevier Inc. Terms and Conditions