Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes  A. Marsano, M.Sc., S.J. Millward-Sadler,

Slides:



Advertisements
Similar presentations
The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Advertisements

Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells  R. Kuroda, M.D.,
Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering  J.K. Mouw, M.S., N.D. Case, Ph.D., R.E. Guldberg,
Expression pattern differences between osteoarthritic chondrocytes and mesenchymal stem cells during chondrogenic differentiation  P. Bernstein, C. Sticht,
BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium- derived progenitor cells cultured in three-dimensional alginate hydrogel 
CCN family 2/connective tissue growth factor (CCN2/CTGF) stimulates proliferation and differentiation of auricular chondrocytes  T. Fujisawa, Ph.D., D.D.S.,
Granulocyte macrophage – colony stimulating factor (GM-CSF) significantly enhances articular cartilage repair potential by microfracture  M.-D. Truong,
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
Hypoxia reduces the inhibitory effect of IL-1β on chondrogenic differentiation of FCS- free expanded MSC  T. Felka, R. Schäfer, B. Schewe, K. Benz, W.K.
The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair  Y. Mifune, T. Matsumoto, K.
Systematic assessment of growth factor treatment on biochemical and biomechanical properties of engineered articular cartilage constructs  B.D. Elder,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
C.B. Chang, S.A. Han, E.M. Kim, S. Lee, S.C. Seong, M.C. Lee 
G.-I. Im, H.-J. Kim  Osteoarthritis and Cartilage 
Parathyroid hormone [1-34] improves articular cartilage surface architecture and integration and subchondral bone reconstitution in osteochondral defects.
C.B. Chang, S.A. Han, E.M. Kim, S. Lee, S.C. Seong, M.C. Lee 
Synergistic effect of IGF-1 and OP-1 on matrix formation by normal and OA chondrocytes cultured in alginate beads  S. Chubinskaya, Ph.D., A. Hakimiyan,
S. Varghese, Ph. D. , P. Theprungsirikul, B. S. , S. Sahani, B. S. , N
Toward scaffold-based meniscus repair: effect of human serum, hyaluronic acid and TGF-ß3 on cell recruitment and re-differentiation  U. Freymann, M. Endres,
The immunosuppressant FK506 promotes development of the chondrogenic phenotype in human synovial stromal cells via modulation of the Smad signaling pathway 
The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels  T. Hao, N. Wen, J.-K.
Differentiation potential of human muscle-derived cells towards chondrogenic phenotype in alginate beads culture  R. Andriamanalijaona, Ph.D., E. Duval,
Roles for the interleukin-4 receptor and associated JAK/STAT proteins in human articular chondrocyte mechanotransduction  S.J. Millward-Sadler, Ph.D.,
H.H. Lee, M.J. O'Malley, N.A. Friel, C.R. Chu 
C. Chiari, M. D. , U. Koller, M. D. , R. Dorotka, M. D. , C. Eder, M
P. C. Kreuz, C. Gentili, B. Samans, D. Martinelli, J. P. Krüger, W
PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage  S. Otsuka, M.D., T. Aoyama, M.D., Ph.D.,
Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells  R. Kuroda, M.D.,
Expression of the cadherin-11 gene is a discriminative factor between articular and growth plate chondrocytes  Dr T. Matsusaki, M.D., T. Aoyama, M.D.,
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
C. Candrian, S. Miot, F. Wolf, E. Bonacina, S. Dickinson, D. Wirz, M
Intra-individual comparison of human ankle and knee chondrocytes in vitro: relevance for talar cartilage repair  C. Candrian, M.D., E. Bonacina, B.Sc.,
Effects of selenium and iodine deficiency on bone, cartilage growth plate and chondrocyte differentiation in two generations of rats  F.L. Ren, Master,
Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell- engineered tissue constructs  M. Pei, F. He, B.M. Boyce, V.L.
Y. Kodama, T. Furumatsu, M. Fujii, T. Hino 
The differences on extracellular matrix among each portion of meniscus
Tamoxifen-inducible Cre-recombination in articular chondrocytes of adult Col2a1- CreERT2 transgenic mice  M. Zhu, M.D., Ph.D., M. Chen, Ph.D., A.C. Lichtler,
Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes  Simon R.
Characterization of pro-apoptotic and matrix-degradative gene expression following induction of osteoarthritis in mature and aged rabbits  Dr. C.M. Robertson,
Synovial mesenchymal stem cells from osteo- or rheumatoid arthritis joints exhibit good potential for cartilage repair using a scaffold-free tissue engineering.
A predominantly articular cartilage-associated gene, SCRG1, is induced by glucocorticoid and stimulates chondrogenesis in vitro  Kensuke Ochi, M.D., Ph.D.,
Enhancing and maintaining chondrogenesis of synovial fibroblasts by cartilage extracellular matrix protein matrilins  M. Pei, M.D., Ph.D., J. Luo, M.D.,
Osteoarthritis and Cartilage
Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment  B. Appel, J. Baumer, D.
M. Cucchiarini, H. Madry, E.F. Terwilliger 
N.D. Miljkovic, M.D., Ph.D., G.M. Cooper, Ph.D., K.G. Marra, Ph.D. 
T. Kurth, M. Sc. , E. Hedbom, Ph. D. , N. Shintani, Ph. D. , M
Expression of the PTH/PTHrP receptor in chondrogenic cells during the repair of full- thickness defects of articular cartilage  H. Mizuta, M.D., Ph.D.,
Growth characterization of neo porcine cartilage pellets and their use in an interactive culture model  Carsten Lübke, Ph.D., Jochen Ringe, M.Sc., Veit.
Joint instability leads to long-term alterations to knee synovium and osteoarthritis in a rabbit model  C. Egloff, D.A. Hart, C. Hewitt, P. Vavken, V.
Luis A. Solchaga, Ph. D. , Johnna S. Temenoff, Ph. D. , Jizong Gao, M
Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?  Gun-II Im, M.D., Yong-Woon.
Mevastatin reduces cartilage degradation in rabbit experimental osteoarthritis through inhibition of synovial inflammation  Y. Akasaki, M.D., S. Matsuda,
Synergistic effect of chondroitin sulfate and cyclic pressure on biochemical and morphological properties of chondrocytes from articular cartilage  G.
First insights into human acetabular labrum cell metabolism
Safety of intra-articular cell-therapy with culture-expanded stem cells in humans: a systematic literature review  C.M.M. Peeters, M.J.C. Leijs, M. Reijman,
L. De Franceschi, Ph. D. , L. Roseti, Ph. D. , G. Desando, Ph. D. , A
Changes in microstructure and gene expression of articular chondrocytes cultured in a tube under mechanical stress  Shuitsu Maeda, M.D., Jun Nishida,
Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5  M. Harada, M.D., M. Takahara, M.D., Ph.D.,
Novel juvenile factors for cartilage regeneration
Membrane culture and reduced oxygen tension enhances cartilage matrix formation from equine cord blood mesenchymal stromal cells in vitro  C. Co, M.K.
Cellular origin of neocartilage formed at wound edges of articular cartilage in a tissue culture experiment  P.K. Bos, M.D., Ph.D., N. Kops, B.Sc., J.A.N.
Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes1 1 Supported by IsoTis S.A.  J. Malda, Ph.D., C.A.
The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint  S. Giannini, M.D., R. Buda,
Effects of helium–neon laser on the mucopolysaccharide induction in experimental osteoarthritic cartilage  Y.-S. Lin, M.Sc, Dr M.-H. Huang, M.D., Ph.D.,
Osteoarthritis year in review 2016: mechanics
Effect of expansion medium on ex vivo gene transfer and chondrogenesis in type II collagen–glycosaminoglycan scaffolds in vitro  R.M. Capito, Ph.D., M.
General Information Osteoarthritis and Cartilage
Presentation transcript:

Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes  A. Marsano, M.Sc., S.J. Millward-Sadler, Ph.D., D.M. Salter, M.D., A. Adesida, Ph.D., T. Hardingham, Ph.D., E. Tognana, Ph.D., E. Kon, M.D., C. Chiari-Grisar, M.D., S. Nehrer, M.D., M. Jakob, M.D., I. Martin, Ph.D.  Osteoarthritis and Cartilage  Volume 15, Issue 1, Pages 48-58 (January 2007) DOI: 10.1016/j.joca.2006.06.009 Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Proliferation index for IMC, FPC, SMC and AC expanded without control (CTR) or with growth factors (TFP). ∗=significantly different from same cells expanded without TFP. °=significantly different from IMC, FPC and SMC. Osteoarthritis and Cartilage 2007 15, 48-58DOI: (10.1016/j.joca.2006.06.009) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Representative sections of pellets generated by meniscus (A, B), FPC (C, D), SMC (E, F) and AC (G, H) expanded with (B, D, F, H) or without (A, C, E, G) the growth factor combination TFP and stained by Safranin-O. Bar=100μm. Osteoarthritis and Cartilage 2007 15, 48-58DOI: (10.1016/j.joca.2006.06.009) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Fractions of GAG (A) and mRNA expression levels of collagen types I (B), II (C) and Sox9 (D) in pellets generated by IMC, FPC, SMC and AC, expanded without (control, CTR) or with growth factors (TFP). ∗=significantly different from same cell source expanded without TFP. °=significantly different from all the other cell sources, expanded in the same condition. §=significantly different from AC, expanded in the same condition. Osteoarthritis and Cartilage 2007 15, 48-58DOI: (10.1016/j.joca.2006.06.009) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Representative Safranin-O stained sections of tissues generated by culture of meniscus (A), FPC (B), SMC (C) and AC (D) into Hyaff®-11 for 6 weeks. Bar=300μm. Osteoarthritis and Cartilage 2007 15, 48-58DOI: (10.1016/j.joca.2006.06.009) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Representative immunohistochemical stain for collagen types I (A, B), II (C, D), III (E, F), IV (G, H) and VI (I, J) of cartilaginous tissues generated by culture of AC (A, C, E, G, I) and synovial membrane cells (B, D, F, H, J) into Hyaff®-11 for 4 weeks. Immunohistochemical stains were similar in tissues generated by meniscus, FPC and SMC. Bar=100μm. Osteoarthritis and Cartilage 2007 15, 48-58DOI: (10.1016/j.joca.2006.06.009) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Representative Safranin-O stained sections of tissues generated by culture of meniscus (A), FPC (B), SMC (C) and AC (D) into Hyaff®-11 for 2 weeks, followed by 6 weeks of ectopic implantation. Bar=300μm. Osteoarthritis and Cartilage 2007 15, 48-58DOI: (10.1016/j.joca.2006.06.009) Copyright © 2006 Osteoarthritis Research Society International Terms and Conditions