Neuropeptides: Developmental Signals in Placode Progenitor Formation

Slides:



Advertisements
Similar presentations
Raquel V. Mendes, Gabriel G. Martins, Ana M. Cristovão, Leonor Saúde 
Advertisements

Long-Range Ca2+ Waves Transmit Brain-Damage Signals to Microglia
Volume 11, Issue 3, Pages (September 2006)
Volume 10, Issue 1, Pages (January 2006)
Volume 25, Issue 5, Pages (June 2013)
Iain Patten, Marysia Placzek  Current Biology 
Alessandra Maria Casano, Marvin Albert, Francesca Peri  Cell Reports 
Martin Gering, Roger Patient  Developmental Cell 
Volume 35, Issue 2, Pages (July 2002)
Smoothened Mutants Reveal Redundant Roles for Shh and Ihh Signaling Including Regulation of L/R Asymmetry by the Mouse Node  Xiaoyan M. Zhang, Miguel.
Wnt/β-Catenin and Fgf Signaling Control Collective Cell Migration by Restricting Chemokine Receptor Expression  Andy Aman, Tatjana Piotrowski  Developmental.
Volume 16, Issue 4, Pages (April 2009)
Rspo3 Binds Syndecan 4 and Induces Wnt/PCP Signaling via Clathrin-Mediated Endocytosis to Promote Morphogenesis  Bisei Ohkawara, Andrei Glinka, Christof.
Volume 13, Issue 6, Pages (December 2007)
Volume 9, Issue 6, Pages (December 2005)
Volume 14, Issue 2, Pages (February 2008)
Robert G. Kelly, Nigel A. Brown, Margaret E. Buckingham 
Volume 8, Issue 4, Pages (April 2005)
Kaoru Sugimoto, Yuling Jiao, Elliot M. Meyerowitz  Developmental Cell 
Sara C. Ahlgren, Marianne Bronner-Fraser  Current Biology 
TGF-β Signaling Regulates the Differentiation of Motile Cilia
Canonical Wnt Signaling Dynamically Controls Multiple Stem Cell Fate Decisions during Vertebrate Body Formation  Benjamin L. Martin, David Kimelman  Developmental.
Volume 44, Issue 2, Pages e5 (January 2018)
XiaoRei Sai, Raj K. Ladher  Current Biology 
Volume 16, Issue 6, Pages (June 2009)
A Crucial Interaction between Embryonic Red Blood Cell Progenitors and Paraxial Mesoderm Revealed in spadetail Embryos  Laurel A. Rohde, Andrew C. Oates,
Depletion of Three BMP Antagonists from Spemann's Organizer Leads to a Catastrophic Loss of Dorsal Structures  Mustafa K. Khokha, Joanna Yeh, Timothy.
Volume 11, Issue 4, Pages (October 2006)
Volume 1, Issue 1, Pages (July 2001)
BMP Signaling Protects Telencephalic Fate by Repressing Eye Identity and Its Cxcr4- Dependent Morphogenesis  Holger Bielen, Corinne Houart  Developmental.
Volume 23, Issue 5, Pages (November 2012)
Kathleen S. Christine, Frank L. Conlon  Developmental Cell 
Volume 11, Issue 6, Pages (December 2006)
A molecular pathway leading to endoderm formation in zebrafish
Nadine Peyriéras, Uwe Strähle, Frédéric Rosa  Current Biology 
Alessandra Maria Casano, Marvin Albert, Francesca Peri  Cell Reports 
Volume 22, Issue 5, Pages (May 2012)
Volume 20, Issue 21, Pages (November 2010)
Marcos Simões-Costa, Michael Stone, Marianne E. Bronner 
Sonic hedgehog and vascular endothelial growth factor Act Upstream of the Notch Pathway during Arterial Endothelial Differentiation  Nathan D. Lawson,
The Alternative Splicing Regulator Tra2b Is Required for Somitogenesis and Regulates Splicing of an Inhibitory Wnt11b Isoform  Darwin S. Dichmann, Peter.
The BMP Signaling Gradient Patterns Dorsoventral Tissues in a Temporally Progressive Manner along the Anteroposterior Axis  Jennifer A. Tucker, Keith.
Volume 16, Issue 5, Pages (March 2006)
Naohito Takatori, Gaku Kumano, Hidetoshi Saiga, Hiroki Nishida 
Vangl2 Promotes Wnt/Planar Cell Polarity-like Signaling by Antagonizing Dvl1-Mediated Feedback Inhibition in Growth Cone Guidance  Beth Shafer, Keisuke.
Volume 18, Issue 4, Pages (April 2010)
Zebrafish pea3 and erm are general targets of FGF8 signaling
Xsox17α and -β Mediate Endoderm Formation in Xenopus
Stat3 Controls Cell Movements during Zebrafish Gastrulation
Bmp2 Signaling Regulates the Hepatic versus Pancreatic Fate Decision
MiR-219 Regulates Neural Precursor Differentiation by Direct Inhibition of Apical Par Polarity Proteins  Laura I. Hudish, Alex J. Blasky, Bruce Appel 
Time of Exposure to BMP Signals Plays a Key Role in the Specification of the Olfactory and Lens Placodes Ex Vivo  My Sjödal, Thomas Edlund, Lena Gunhaga 
Dian-Han Kuo, David A. Weisblat  Current Biology 
Won-Suk Chung, Didier Y.R. Stainier  Developmental Cell 
Julie E. Cooke, Hilary A. Kemp, Cecilia B. Moens  Current Biology 
Jeffrey D Amack, H.Joseph Yost  Current Biology 
FGF Signaling Controls Somite Boundary Position and Regulates Segmentation Clock Control of Spatiotemporal Hox Gene Activation  Julien Dubrulle, Michael.
Volume 90, Issue 2, Pages (July 1997)
Volume 8, Issue 4, Pages (April 2005)
Volume 11, Issue 4, Pages (October 2006)
Temporally Regulated Asymmetric Neurogenesis Causes Left-Right Difference in the Zebrafish Habenular Structures  Hidenori Aizawa, Midori Goto, Tomomi.
Jonas Muhr, Thomas M Jessell, Thomas Edlund  Neuron 
Volume 47, Issue 1, Pages (July 2005)
Pharyngeal arch patterning in the absence of neural crest
Volume 20, Issue 22, Pages (November 2010)
Volume 23, Issue 4, Pages (August 1999)
Volume 8, Issue 1, Pages (January 2005)
Morphogenetic Movements Underlying Eye Field Formation Require Interactions between the FGF and ephrinB1 Signaling Pathways  Kathryn B. Moore, Kathleen.
Assigning the Positional Identity of Spinal Motor Neurons
Volume 19, Issue 19, Pages (October 2009)
Presentation transcript:

Neuropeptides: Developmental Signals in Placode Progenitor Formation Laura Lleras-Forero, Monica Tambalo, Nicolas Christophorou, David Chambers, Corinne Houart, Andrea Streit  Developmental Cell  Volume 26, Issue 2, Pages 195-203 (July 2013) DOI: 10.1016/j.devcel.2013.07.001 Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 1 Expression of SST, SSTR5, Noc, and Pax6 In situ hybridization for SST (A–C ventral view; A′ transverse section), SSTR5 (D–F dorsal view; F′ transverse section), Noc (G–I dorsal view; I′ transverse section), and Pax6 (J–L dorsal view). Stages are indicated in the right corner of each panel. Black lines in (A)–(L) indicate the level of the sections. aPP, anterior placode progenitors; me, mesendoderm; np, neural plate; nt: neural tube. See also Figure S1. Developmental Cell 2013 26, 195-203DOI: (10.1016/j.devcel.2013.07.001) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 2 SST Is Required for aPP Character (A) Unilateral ablation of axial and paraxial mesendoderm (red line); light gray indicates mid- and hindgut endoderm, and gray shows foregut endoderm. (B–F) Pax6 (B and B′), Noc (C and C′), and SSTR5 (D and D′) after mesendoderm ablation (dotted lines); Pax6 (E and E′) and Noc (F and F′) after mesoderm ablation and SST bead graft. SST-coated beads (∗) restore Pax6 (E–E″) and Noc (F and F′) after ablation (arrowheads). Lines in (B)–(F) indicate the level of sections shown in (A′)–(E′). (G and H) Pax6 after DMSO (G) or CSST (H) treatment. (I–N) Pax6 (I and J), Noc (K and L), and Eya2 (M, N, and N′) in SSTR5 morphants. (J), (L), and (N) show the same embryos as in (I), (K), and (M), respectively, after MO detection (brown). See also Figure S2. Developmental Cell 2013 26, 195-203DOI: (10.1016/j.devcel.2013.07.001) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 3 Noc Is Required for aPP Character (A) Regulation of aPP markers in vitro. (a) Quantification of Noc and Pax6 expression by NanoString nCounter in pPP explants cultured alone (black), with FGF2 (red), with posterior head mesoderm (pM; gray), or with posterior head mesoderm and SU5402 (blue). Bars represent means of normalized values ± SE. The asterisk (∗) indicates significant differences: p < 0.05. (b) Cultured pPP explants initiate Noc. (c and d) Pax6 after DMSO (c) or TRAP101 (d) treatment. (e–g) Pax6 in explants cultured with control MOs (e), Noc splice-blocking MOs (f), or Noc MOs and peptide (g). (h) Graph showing Noc knockdown effect on Pax6 and Six1. Bars represent mean values ± SE. The asterisk (∗) indicates significant differences: p < 0.05. See also Figure S3. (B) Noc is required for aPP fate in vivo. (a and b) HH4+/HH5− embryos cultured for 12 hr in DMSO (a) or opioid receptor inhibitors (b; N/U: naloxone, UFP101). (c and d) Pax6 in HH4+/HH5− embryos treated with DMSO (c) or CSST (C) for 36 hr, naloxone (N) and UFP101 (U); compare brackets in (c) and (d). (e–h) δ-crystallin expression in embryos cultured for 60 hr from HH4+/HH5− with DMSO (e) or CSST (C), naloxone, and UFP101 (f–h). (f)–(h) show the range of phenotypes, and (e′)–(h″) show sections through the left and right lens (L) regions of the same embryos shown in (e)–(h). OV, optic vesicle. (i–k′) After electroporation of Noc ATG MOs at HH4−, embryos were cultured for 10 hr (i and i′, and k and k′) or 18 hr (j and j′). Brown (i′ and k′) and green (j′) indicate electroporated cells. Developmental Cell 2013 26, 195-203DOI: (10.1016/j.devcel.2013.07.001) Copyright © 2013 Elsevier Inc. Terms and Conditions

Figure 4 SST and Noc Control aPPs in Zebrafish (A–C) Expression of Pax6b (A), pnocb (B), and SST1 (C) in zebrafish at early somite stages: dorsal views, anterior to the left. (D and E) Pax6b reduction by CSST (E; arrowhead), but not by DMSO (D; white arrowhead). (F–H) Embryos were injected with control (F) or pnocb MOs (G and H); the latter show Pax6b reduction (arrowheads in G and H). Dotted lines indicate CNS expression of Pax6b. (I–N) pnocb ATG (I–K) or control (L–N) MO-injected embryos were incubated in DMSO (I and L) or Noc peptide (J, K, M, and N). Dotted lines indicate CNS Pax6b expression. (O–Q) Embryos were injected with control (O) or pnocb MOs (P and Q). At 24 hpf (frontal views), Pitx3 expression reveals asymmetric, small (P; arrowhead) or almost absent lenses (Q; arrowhead). (R) Graph shows Pax6b reduction after SST inhibition, SST and Noc inhibition, in Noc morphants and Noc morphants + Noc peptide. Numbers for each treatment are at the top. Brown bars indicate embryos with phenotype, blue bars show normal embryos. (S) Quantification of pnocb morphants with Pitx3 reduction (yellow) or loss (brown) at early somite stages or 24 hpf. (T) Model for neuropeptide function. Developmental Cell 2013 26, 195-203DOI: (10.1016/j.devcel.2013.07.001) Copyright © 2013 Elsevier Inc. Terms and Conditions